COMMENCEMENT BAY NATURAL RESOURCE TRUSTEES
SEDIMENT CLEANUP GOALS FOR ACTIVE NATURAL RESOURCE
RESTORATION PROJECTS

In developing restoration projects for natural resources injured by releases of hazardous
substances, the Commencement Bay Trustees are pursuing strategies that include restoration and
enhancement of habitats degraded by human activities as well as preservation of existing habitat
values and functions. As a result of the history of development in the industrial tideflats area of
Commencement Bay, habitat manipulation activities undertaken in connection with active
restoration and enhancement projects may expose fish and wildlife to potentially harmful levels
of pre-existing soil, sediment or ground water contamination. Consequently, the Trustees
frequently are faced with the prospect of deciding whether, and to what extent, existing
contamination must be remediated to ensure an acceptable likelihood of success for the proposed
restoration project.

Trustee decision making on active restoration projects (projects involving manipulation
of existing habitat features) is guided in part by the following assumptions:

Active restoration projects are intended to attract fish and wildlife and to increase the use
of the project area by fish and wildlife.

Active restoration projects should generate a net gain in ecosystem function and must
avoid increasing the potential for natural resource injuries.

Decision making on active restoration projects should be guided by the best available
scientific evidence. The need to achieve timely restoration of natural resource species,
habitats and services requires the Trustees to make decisions and move forward with
restoration projects even where the state of scientific knowledge is changing or
incomplete. Because the goal of active restoration projects is to result in net
environmental improvements, uncertainties about the benefits and detriments of
alternative approaches or decision criteria should be resolved in favor of protecting and
enhancing natural resources.

Applying these assumptions to active restoration projects involving pre-existing sediment
contamination presents special challenges. Existing sediment cleanup regulatory standards are
based primarily on observed effects of hazardous substances on benthic species and generally do
not address the bioaccumulative impacts of persistent toxic compounds. Authoritative technical
guidance on what level of sediment contamination is protective of fish and wildlife is not
available for all frequently encountered contaminants. Consequently, the Trustees need to
determine the sediment goals they will follow in making decisions on active restoration projects.

To provide notice to interested parties and consistency in decision making, the Trustees
have determined to adopt the following sediment cleanup goals for active natural resource



restoration projects in Commencement Bay:
Total polynuclear aromatic hydrocarbons (PAHs) 2,000 ppb dry wt.
Polychlorinated biphenyls (PCBs) 200 ppb dry wt.
Tributyltins (TBTs) 6,000 ng/g OC

The above goals are the result of a review by technical experts of the results of numerous
field and laboratory investigations of toxic effects in fish and wildlife related to sediment
contamination, and have been developed in connection with the assessment and resolution of
natural resource damages. The attached information summarizes the factors considered in
arriving at these numbers. Pending the development of other specific goals, for other
contaminants the Trustees will apply the lower of the Washington State Sediment Management
Standards’ sediment quality standards (SQS) or the sediment quality objectives (SQOs) of EPA’s
Commencement Bay Nearshore/Tideflats Superfund Site Record of Decision.

These goals are based upon the best currently available information on contaminant
effects and may change as further information is developed. While the application of these goals
will to some extent depend upon site conditions, it is the Trustees’ intent that they will serve as
the default goals for sediments at all active restoration projects.



Estimation of injury level for chinook
salmon--PCBs as toxicant

. 10 studies reviewed, both lab and field-based. Data
used to determine tissue levels of PCBs associated with
injury. Injury endpoints included mortality, impaired
growth, reduced disease resistance and immune function,
impaired endocrine function.

 Tissue concentrations associated with injury were as
low as 140 ppb wet weight, and as high as 22 ppm wet
weight. Lower end of range tended to be associated with
field investigations of salmon in Puget Sound.

e Assumptions made in estimating sediment
concentrations required to give tissue concentrations
were: whole body lipid levels--2% in field, 4% in lab;
BSAF--1.7 (higher BSAF leads to lower allowable
sediment concentrations. BSAFs for PCBs and chinook
salmon in Puget Sound estuaries range as high as 5.2.
BSAF of 4.0 increasingly supported in scientific literature).

e Overall effects level for the wide range of endpoints
averaged 390 ppb in sediment, dry wt basis (8 studies
total included). Lower levels (100 ppb or less) supported
by field data for chinook salmon in Puget Sound. Best
professional judgement is to use a safety factor of 2
applied to overall effects level (EPA generally supports a
- factor of 10), resulting in sediment injury level of 195 ppb
dry wt. Rounded to 200 for settlement purposes.

» Detailed laboratory investigations with Puget Sound
chinook salmon are not done (e.g. Round 3). However, it
is estimated that the levels determined from this approach
will be at or below 200 ppb.
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Estimation of injury level for bird
species--PCBs as toxicant

« A steady state biomagnification analysis performed by
the U.S. Fish and Wildlife Service in 1996 modeled
sediment levels of 30 ppb, 150 ppb, and 450 ppb total
PCBs for predicting injury to marine birds in
Commencement Bay.

. This analysis looked at total PCB concentrations in
eggs as the most sensitive and predictive endpoint in
determining the potential for injury to birds. Injuries,
including egg lethality and embryonic deformities, were
determined as Lowest Observable Adverse Effects Levels
(LOAELs) and were based on both laboratory and field
studies (Ludwig et al., 1993)

. Field investigations of great blue herons in
Commencement Bay suggest a potential for bird species
feeding in the Bay to be impacted. This conclusion is based
in part on the levels of PCBs found in heron eggs, together
with observations of feeding behavior and local feeding site
fidelity.

« Using best professional judgement, incorporating
existing information and current field studies, an injury level
for marine birds in the Commencement Bay environment is
estimated to be in the 150-200 ppb range for PCBs in
sediment.



Factors supporting an estimated injury level
of 2000 ppb total PAHs, dry wt, in sediment

» Developed for a single species, English sole
« Based entirely on field data

« Datacollected over more than 10 years, from more than
30 sites

« Geographic coverage from northern California through
Alaska, with most sampling occurring in Puget Sound

» Liverlesion threshold estimates are from Horness et al.,
1998 (peer reviewed). This is a statistical approach,
encompassing a sophisticated toxicological approach.

» Liverlesion thresholds range from 230 to 2800 ppb total
PAHs in dry sediment, with an average threshold of
approximately 1200 ppb. This average leaves out one of the
more sensitive endpoints, for which a threshold could not be
statistically determined at an alpha level of 0.05. The
threshold estimate for development of any lesion (including
the most sensitive lesion) is 620 ppb total PAHSs.

* Reproductive endpoints were overlaid on the plots of
liver lesion data, again all field based data, and for English
sole collected in Puget Sound. These data were from
Johnson et al. 1998 and Collier et al. 1998.

 Reproductive dysfunctions included failure to mature,



failure to spawn, failure to produce fertile eggs, and
production of abnormal larvae.

* Bothstatistical and visual interpretation of the lesion and
reproductive function data indicate that there may be injuries
to this species occurring at sediment FAH levels
considerably lower than 1000 ppb, but there is an apparent
~increase in both types of injuries at approximately the 2000
ppb level. Thus a level of PAH contamination which is
thought to afford reasonable though not complete,
protection to English sole is 2000 ppb total PAHs, based on
dry weight of sediment. The PAHs included in this total are
as listed in Collier et al, 1998.
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Estimation of injury level for benthos--
TBT as toxicant

o  Multiple studies reviewed, incorporated into report by
Weston (1996) to the USEPA. Injury endpoint used was
median water concentration for chronic effects as
determined by this review, 0.24 ng TBT ion per ml.

e Koc of TBT measured by Meador et al (1997) is
25,100. Application of this Koc to the Weston value gives
a sediment concentration for injury of ~6000 ng TBT/g
organic carbon. Assuming an average TOC value of 2%
in sediments from the Hylebos Waterway, an injury level of
120 ng TBT/g sediment (dry wt) is derived. -

* Proposed water quality criterion by USEPA is 0.01 ng
TBT ion per ml, which would result in much lower
sediment values. |

e Median TBT concentration in Hylebos Waterway
sediment is 329 ng/g dry wt. This level is higher than the
LC50 values for sensitive invertebrates such as the
ampr;ipod Euhaustorius washingtonianus (Meador et al.,
1997 '

» LCB5O for starry flounder is 3.0 ng/ml water. Sublethal
effects are expected at levels much lower than this.
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