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CHAPTER 1
INTRODUCTION

This document presents the determination and quantification of injuries to fishery resources that
have resulted from releases of polychlorinated biphenyls (PCBs) from paper company facilities
along the Lower Fox River, Wisconsin. This injury assessment is part of the natural resource
damage assessment (NRDA) being performed for the Lower Fox River/Green Bay environment
by the U.S. Department of the Interior (the Department) through the U.S. Fish and Wildlife
Service (USFWS, or the Service), the National Oceanic and Atmospheric Administration
(NOAA), the Oneida Tribe of Indians of Wisconsin (Oneida Tribe), and the Menominee Indian
Tribe of Wisconsin (Menominee Tribe) (collectively, the Trustees).

The Trustees have issued several NRDA reports that address injuries to natural resources of the
Lower Fox River/Green Bay ecosystem. These reports provide documentation of:

< PCB releases and transport pathways from Lower Fox River paper companies to the
Lower Fox River/Green Bay environment (Stratus Consulting Inc., 1999d)

< injuries to avian resources in the Lower Fox River/Green Bay environment that result from
the PCB releases and transport (Stratus Consulting Inc., 1999b)

< injuries to surface water resources in the Lower Fox River/Green Bay environment that
result from the PCB releases and transport (Stratus Consulting Inc., 1999c)

< PCB fish consumption advisories and exceedences of federal PCB tolerance levels in fish
of the Lower Fox River/Green Bay environment (Stratus Consulting Inc., 1998)

< the methods, results, and conclusions of studies conducted by the Service on the adverse
effects of PCBs on walleye fish health in the Lower Fox River/Green Bay environment
(Stratus Consulting Inc., 1999a).

The purpose of this report is to present an injury determination and quantification for fishery
resources of the Lower Fox River/Green Bay ecosystem. This injury determination and
quantification relies on the reports previously prepared by the Trustees, on additional information
that supplements these previous reports, and on data from the scientific literature.

This report will be used by the Trustees to assist in the determination of the amount and type of
restoration required to compensate the public for the injuries. A companion report prepared by
the Service describes the nature and magnitude of damages associated with recreational fishing
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losses resulting from the fish injuries described in this report (Stratus Consulting Inc., 1999e).
This process was described in the initial Restoration and Compensation Determination Plan,
published September 21, 1998 [63 FR 50,254] and will result in completion of the Restoration
and Compensation Determination Plan.

This report is organized as follows (with brief chapter summaries also provided):

Chapter 2 describes the fishery resources of the Lower Fox River/Green Bay environment, and
includes descriptions of the ecological, economic, and tribal cultural importance of the resource.
The resource is a nationally significant resource that is vital in providing important ecological
services, human use services, and tribal cultural services.

Chapter 3 presents a PCB pathway determination for the fishery resources and describes PCB
exposure to fish in the Lower Fox River/Green Bay system. The chapter demonstrates that PCB
releases from Lower Fox River paper company facilities are the primary source of PCBs in the
Lower Fox River and Green Bay. Fish throughout the river and bay are exposed to the released
PCBs. Fish exposure to PCBs occurs through direct contact with the water and sediments and
through consumption of prey items that are contaminated with PCBs. The accumulation of PCBs
tends to be highest in predatory species and in areas of the river and bay with the highest sediment
and surface water PCB concentrations. The chapter also concludes that PCB transport and
exposure pathways continue to result in fish exposure to PCBs.

Chapter 4 describes the injury assessment approach used for fishery resources. The approach,
which follows the Service’s Assessment Plan [61 FR 43558] and addenda [62 FR 33804;
63 FR 25144], includes evaluation of injuries according to the following three definitions of injury
for biological resources:

< PCB concentrations that exceed action or tolerance levels established under section 402 of
the Food, Drug and Cosmetic Act, 21 U.S.C. 342, in edible portions of organisms
[43 CFR § 11.62(f)(1)(ii)]; or

< PCB concentrations that exceed levels for which an appropriate State health agency has
issued directives to limit or ban consumption of fish [CFR § 11.62(f)(1)(iii)]; or

< PCB concentrations sufficient to cause the biological resource or its offspring to have
undergone at least one of the following adverse changes in viability: death, disease,
behavioral abnormalities, cancer, genetic mutations, physiological malfunctions (including
malfunctions in reproduction), or physical deformations [43 CFR § 11.62(f)(1)(i)].

The assessment of fish consumption advisory and exceedence of tolerance level injuries is based
on the Service’s 1998 report (Stratus Consulting Inc., 1998), updated with more recent
information. Adverse changes in viability are assessed in terms of adverse effects on fish health in
walleye and adverse reproductive effects in lake trout. A preliminary assessment was also
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conducted for adverse effects on fish health in brown trout and lake trout. These injuries were
assessed through a combination of field and laboratory studies and information from the scientific
literature. Chapter 4 also includes documentation that the injury assessment approach and
measured biological responses meet the Department’s injury determination criteria.

Chapter 5 describes fish injuries based on exceedences of the Food and Drug Administration
(FDA) PCB tolerance level in fish tissue and based on the establishment of state fish consumption
advisories because of PCBs in fish tissue. The chapter concludes that PCB concentrations in the
edible tissue of many fish species in the Lower Fox River/Green Bay environment exceed the
FDA PCB tolerance level. The exceedences have occurred since PCBs were first measured in
Lower Fox River/Green Bay fish and continue to the present. The chapter also summarizes the
fish consumption advisory programs, approaches, and methods of the State of Michigan and the
State of Wisconsin, and presents the PCB advisories issued by the two states for fish from the
Lower Fox River/Green Bay environment. PCB advisories have been in place since the mid-
1970s, and cover many fish species throughout the Lower Fox River/Green Bay environment.

Chapter 6 presents information on adverse health effect injuries to walleye in the Lower Fox
River/Green Bay environment. The information in the chapter demonstrates that walleye from the
assessment area have a higher prevalence of liver tumors and pre-tumors compared with walleye
from control areas. Assessment area walleye also have higher PCB concentrations, and fish liver
tumors and pre-tumors are known to be caused by PCB exposure. The association of increased
tumor frequency with PCB exposure in walleye demonstrates that environmental exposure to
PCBs in the Lower Fox River and Green Bay has resulted in injury to walleye.

Chapter 7 presents the results of an assessment of injuries to lake trout in Green Bay and Lake
Michigan resulting from PCB exposure. Based on the information and analyses presented in this
chapter, the Trustees conclude that there is indication that PCBs caused lake trout reproductive
failure in the 1970s. However, given that evidence suggests little to no reproductive effects of
PCBs since 1980 and that other factors appear to be substantially more important to the survival
of lake trout fry, the Trustees determine that current data do not support the conclusion that lake
trout in Green Bay and Lake Michigan are injured by the PCBs released from Fox River paper
companies.

Chapter 8 summarizes the injury determination and quantification for fishery resources of the
Lower Fox River/Green Bay. Fish throughout the Lower Fox River and Green Bay are injured as
a result of the extensive PCB fish consumption advisories established by the states of Michigan
and Wisconsin, and by PCB concentrations in fish tissue that exceed the FDA tolerance level.
These injuries have occurred from the mid-1970s to the present and cover many different fish
species throughout the entire area of the Lower Fox River and Green Bay. The magnitude of the
service losses that result from these injuries is quantified in a separate report (Stratus Consulting,
1999e). In addition, walleye of the Lower Fox River and Green Bay are injured as a result of
higher incidences of liver tumors and pre-tumors associated with PCB exposure than in reference
populations.



CHAPTER 2
FISHERY RESOURCES IN THE ASSESSMENT AREA

2.1 INTRODUCTION

The Green Bay fishery provides vital ecologic, economic, recreational, and tribal services. As part
of the larger Lake Michigan and Great Lakes ecosystem, Green Bay provides important fish
habitat and supports a diverse and productive fishery. The fishery is essential to the Green Bay
food web, providing food for the region’s piscivorous birds and mammals. The fishery also
supports a variety of human uses including commercial fishing, recreational fishing, and tribal
cultural resource use.

To address the complex issues of fisheries restoration across the Great Lakes, resource agencies
from the United States and Canada chose to develop a common strategy for fisheries
management. In 1980, the Service and the National Marine Fisheries Service joined 10 other
state, provincial, or Federal fishery agencies as signatories to the Joint Strategic Plan for
Management of Great Lakes Fisheries (Great Lakes Fishery Commission, 1980). Newly formed
tribal fishery agencies became signatories to the strategic plan in 1989 and a third revision of the
plan was approved in 1997 (Great Lakes Fishery Commission, 1997). Lost fishing opportunities,
instability of fish communities, inadequate environmental quality, and competition and conflict
among users of the fishery resources remain as the primary issues addressed by the strategic plan
to achieve the common goal statement for Great Lakes Fishery Agencies:

To secure fish communities, based on foundations of stable self-sustaining stocks,
supplemented by judicious plantings of hatchery-reared fish, and provide from
these communities an optimum contribution of fish, fishing opportunities and
associated benefits to meet the needs identified by society for:

wholesome food,
recreation,
cultural heritage,
employment and income,
and a healthy aquatic ecosystem.

Recognizing that the economic and cultural value of the Great Lakes fisheries continued to be
damaged by excessive harvest, loss of critical habitat, invasions of nonindigenous species, and
contaminant burdens, the U.S. Congress enacted the Great Lakes Fish and Wildlife Restoration
Act of 1990 (16 U.S.C. 941). The Act directed the Service to conduct a comprehensive study of
the status of, and the assessment, management, and restoration needs of, the fishery resources of
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the Great Lakes basin. The study was to include, in part, recommendations regarding 1) an action
plan to analyze the effects of contaminant levels on fishery resources, 2) an action plan for the
cooperative restoration and enhancement of depleted, nationally significant fish stocks, including
lake trout, yellow perch, lake sturgeon, walleye, forage fish, and Atlantic salmon, and 3)
important fishery resource habitat and other areas that should be protected, restored, or enhanced
for the benefit of the Great Lakes fishery resources. The completed study report provides findings
for Lake Michigan and 32 recommendations for priority activities to achieve restoration of the
Great Lakes (Burkett et al., 1995). The Act also directed the Service to establish coordination and
fishery resources offices to enhance the operational and coordinating activities of the Service
related to fishery protection, restoration, maintenance, and enhancement of the Great Lakes.

The emphasis and effort expended by governmental agencies in managing the fishery resources of
Green Bay and Lake Michigan are indications of the importance of the resource in supplying vital
ecologic, cultural, and economic services. The following sections briefly describe some of these
services provided by the fishery resource.

2.2 GENERAL DESCRIPTION OF THE FISHERY RESOURCE

Green Bay has one of the most productive fisheries in the Great Lakes (U.S. EPA and
Environment Canada, 1995), supporting a diversity of habitats and forage that, in turn, support a
complex food web. Each region of Green Bay offers different habitats to its resident fish
(Bertrand et al., 1976). Northern Green Bay, north of Chambers Island, is characterized by deeper
water, with about 85% of the area under more than 30 feet of water and maximum depths of 160
feet. The northern bay thus provides mostly deep, cold-water habitat. Little and Big Bay de Noc,
on Michigan’s Upper Peninsula, are large open bays of moderate depths and are suitable to both
warm-water fish and some colder water fish. Southern Green Bay, south of Chambers Island,
provides habitat for warm-water fish, with half of the region’s area less than 30 feet deep.
Estuaries and sandbars, occurring especially on the west shore and south end of Green Bay, are
warm water habitats found primarily at the delta fans of rivers. Finally, the shoreline of the eastern
bay along the Door Peninsula is rocky and steep, and the bays along this shoreline tend to have
relatively warm shallow waters (Bertrand et al., 1976).

The Fox River has three primary habitat types, differentiated by substrate (Exponent, 1999). The
river downstream of DePere Dam consists primarily of soft, silty substrate (composed of silty
aqueous sediments), while above the dam a mix of sand, cobble and rock predominates. The third
type of habitat is characterized by submerged aquatic vegetation and can be found throughout the
Lower Fox River (Exponent, 1999). Gravel/cobble-dominated habitats generally support greater
fish species diversity than sand or silt substrate and are used by many fish species as spawning
habitat. For example, walleye and smallmouth bass spawn exclusively on rock or gravel beds
(Exponent, 1999). Aquatic vegetation provides forage, cover, spawning, and nursery habitat to
fish and support increased species richness by increasing the structural complexity of shallow
water habitats (Exponent, 1999). For example, species such as northern pike utilize beds of
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submerged aquatic vegetation in the Lower Fox River as nursery habitats and feeding grounds
(Exponent, 1999).

Shorelines offer a wide diversity of habitat to warmer-water fish, while the deep, open waters
found in parts of Green Bay attract fish such as trout and salmon which prefer colder
temperatures. Small forage fish, including alewives, gizzard shad, and spottail shiners, feed on
insects, zooplankton, and bottom-dwelling invertebrates. They tend to occupy nearshore habitats
in the littoral zone, including wetlands, where aquatic vegetation provides cover and forage.
Forage fish provide an important trophic link between zooplankton and game fish (University of
Wisconsin-Green Bay, 1993) such as walleye and northern pike. Beaches, with fewer plants, more
sediments, and stronger wave action, appear to be preferred by fewer species than wetlands for
nearshore habitat (Brazner and Magnuson, 1994). Finally, bottom feeders such as channel catfish
are omnivores that scavenge in the sediments of the bay, providing another trophic link between
bottom dwelling invertebrates and predator fish.

Several fish species, including northern pike, walleye, smallmouth bass, yellow perch, and lake
sturgeon, have been documented to migrate between the waters of Green Bay and tributaries to
Green Bay (Cogswell, 1998; Cogswell and Bougie, 1998; Green Bay Fisheries Resources Office,
1998). Fish migration has also been documented between Green Bay and Lake Michigan
(Wisconsin Department of Natural Resources, 1996) and within Green Bay itself (U.S. Fish and
Wildlife Service, 1998).

The species composition and trophic relationships of the Green Bay fishery resource are much
different today than they were before the onset of significant human impacts in the 19th century
(University of Wisconsin-Green Bay, 1993). Overfishing, the introduction of exotic species,
habitat destruction, and pollution have all contributed to shifts in the fish community composition
(Bertrand et al., 1976; Wisconsin Department of Natural Resources, 1988).

Despite these historical changes in the fish community, the fishery resource continues to provide
valuable ecological services. The Green Bay ecosystem supports a wide diversity of piscivorous
birds that depend on fish as a food source, including bald eagles, terns, herons, ducks, and double-
crested cormorant (Stratus Consulting Inc., 1999b). Piscivorous mammals that depend on the
fishery resource in the area include otter and mink (Linscombe et al., 1982; Toweill and Tabor,
1982; Allen et al., 1987).

2.3 COMMERCIAL AND RECREATIONAL FISHING

Commercial fishing and sport fishing are both important human uses of the Lower Fox
River/Green Bay fishery resource (Colborn et al., 1990). Commercial fishing dominated
historically and is still a major industry in Green Bay. However, recreational fishing currently
contributes more to the economy than does commercial fishing. For example, in 1985, the landed
value of commercial fishing in the Great Lakes was estimated to be $41 million, compared to
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estimated spending by sport anglers of $2 billion (Colborn et al., 1990). Since sport fishing is
considered to be more valuable economically, Great Lakes resource agencies have adopted
policies that favor recreational fishing over commercial fishing. The Trustees’ NRDA report on
recreational fishing damages associated with fish consumption advisories in the assessment area
presents a more thorough evaluation of recreational fishing use (Stratus Consulting Inc., 1999e).

2.3.1 Commercial Fishery

The commercial fishing industry began in Green Bay in the early 19th century (Bertrand et al.,
1976). Species important in the northern bay were lake whitefish and lake trout, while Little and
Big Bay de Noc offered plentiful lake sturgeon, northern pike, lake herring, perch, suckers, and
black bass. In the southern bay, popular species were lake herring, lake whitefish, lake trout,
walleye, perch, suckers, pickerel, and lake sturgeon. Catfish and suckers, along with muskellenge,
carp, white bass, crappies, sunfish, and shad, were also harvested in the southern bay and the Fox
River (Bertrand et al., 1976).

The commercial fishery of the Great Lakes and Green Bay has declined in recent years (U.S. EPA
and Environment Canada, 1995). Degraded by a combination of factors, including overfishing,
pollution, and introduction of exotic species, the fishery has changed such that the more valuable
larger fish have given way to smaller and relatively low-value species. Alewives, harvested
primarily for animal feed and also for fish food and fertilizer, were a crucial commercial species in
Green Bay through the early 1970s, constituting between 50% and 85% of the total annual
alewife harvest from Lake Michigan (Bertrand et al., 1976). However, alewife harvest has
declined in recent years and the alewife harvest in Green Bay from 1978 to 1990 comprised only
about 12% of the average annual Lake Michigan catch (Table 2-1).

Table 2-1 summarizes the average annual harvest of the major commercial fish species from
Green Bay between 1978 and 1990. Average annual harvest between these years included
approximately 2.4 million pounds for alewife and approximately 2.5 million pounds for lake
whitefish. Other species for which the annual harvest for these same years exceeded 100,000
pounds are smelt, suckers, perch, and carp.

More recent data reflect changes in the commercial fishery. The 1998 commercial catch for
several important commercial species in the Wisconsin waters of Green Bay is summarized in
Table 2-2. Chubs and lake whitefish dominated the 1998 harvest, and the smelt harvest reflects a
continuing lakewide decline in the smelt population (Wisconsin Department of Natural Resources,
1999). The commercial harvest of yellow perch was limited by quota to 200,000 pounds from
Green Bay (Wisconsin Department of Natural Resources, 1999).
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Table 2-1
Average Annual Commercial Harvest on Green Bay, 1978-1990a

Species (1,000s of pounds) from Green Bay
Annual Catch from Green Bay Percent of Lake Michigan Catch

b

Lake whitefish 2500 46.90

Alewives 2446 12.46

Smelt 2246 80.89

Suckers 1211 97.54

Perch 440 28.40

Carp 381 98.71c

Chubs 21 0.77

Round whitefish
(Prosopium cylindraceum) 18 8.59

Lake trout 11 3.76

a. Data provided by Randy Eshenroder, Great Lakes Fisheries Commission, 1995.
b. Calculated from annual Lake Michigan catch and percent of Lake Michigan catch from Green Bay.
c. Carp catch average includes both the 1978-1983 period when fishing was active and the 1984-1990 period
when carp fishing was closed on Green Bay. Total Lake Michigan carp catch after 1984 was typically less
than 1,000 pounds per year.

Table 2-2
1998  Commercial Harvest of Selected Species from the Wisconsin Waters ofa

Lake Michigan and Green Bay

Species 1998 Catch (1000s of pounds)

Chubs 1,891

Lake whitefish 1,557

Rainbow smelt 272 (125 from Green Bay)

Yellow perch 204b,c

a. 1998 quota year, from July 1, 1997, to June 30, 1998.
b. From Green Bay only. Harvest was closed on Lake Michigan.
c. Reported value for the 1998 calendar year.

Source: Wisconsin Department of Natural Resources (1999).
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2.3.2 Sport Fishery

The Lower Fox River/Green Bay sport fishery is a very important economic resource to the
region (Stratus Consulting Inc., 1999e). In 1963, the Wisconsin Department of Natural Resources
introduced 9,000 rainbow trout into several Door County tributaries to manage the alewife
population and to provide a sport fishery (Eggold, 1995). Because of the success of this initial
stocking, the program was expanded to include other salmonids: brown trout, brook trout, lake
trout, chinook salmon, and coho salmon (Hansen et al., 1990; Eggold, 1995). Since stocking
began, the sport fishery has become an important industry (Colborn et al., 1990). The Wisconsin
Department of Natural Resources (1999) estimates that anglers spent nearly 3 million hours
fishing on Lake Michigan and Green Bay in 1998. A walleye fish stocking program below the
DePere Dam from 1977 through 1984 attracted sport fishers to the region, and today this area is
an established, regionally famous walleye fishing area (Wisconsin Department of Natural
Resources, 1988).

Additional details on the economic importance of the Green Bay recreational fishery is presented
in the Trustees’ report on damages associated with PCB fish consumption advisories (Stratus
Consulting Inc., 1999e).

2.4 IMPORTANCE OF THE FISHERY TO THE ONEIDA AND M ENOMINEE TRIBES

The Fox River/Green Bay fishery is vital to the Oneida Tribe and the Menominee Tribe because of
direct and indirect relationships to the Oneida and Menominee lifestyles. The fishery resource is
an integral part of the culture of both tribes, and has served as a vital food source for tribal
members.

The Oneida Tribe begins the fishing season with a ceremony giving thanks to the Creator for the
annual fish runs. The ceremony is followed by a social dance to celebrate the return of the fish.
The ceremony and dance continue to be celebrated on the reservation even though the fish are not
considered safe to eat because of PCB contamination. Historically, the annual fish migrations
were a community event. Family, clans, and neighborhood groups would camp at their traditional
locations along reservation waters for days at a time. These annual gatherings that revolved
around the fish migrations were important community events and helped to refine the traditional
Oneida culture and to teach the Oneida children a way to sustain and provide for themselves.
Similarly, the lake sturgeon has played an important role in the Menominee tribal culture. The
tribe celebrates the return of the sturgeon every spring with a ceremony and community feasts,
and lake sturgeon play an important role in the creation stories of the Menominee Tribe.

The fish supply historically was a major source of protein for many tribal members. Fish would be
dried, canned, salted, or smoked for use throughout the year. One of the local tribal delicacies was
fish head soup, a seasonal dish prepared only during the spawning runs. Many different fish
species were utilized; lake sturgeon were historically a significant food source for the Menominee
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Tribe. The annual fish migrations were also a way to supplement the income. Tribal members
would take a portion of their catch to Green Bay or Appleton to sell, providing a source of
income for the family.

The importance of the fishery resources to the tribes is indicated by the changes in tribal culture
that have resulted from the PCB contamination. For example, the issuance of fish consumption
advisories in the 1970s reduced the consumption of fish from the Oneida reservation, removing
fish as a staple of the Oneida diet. With the decline in fish consumption came a loss in the ability
to share fish catches with other members of the tribal community, one of the most important
lessons taught to the children at the annual gatherings. Some tribal members believe that this loss
of sharing has contributed to the disconnect between the elders and the younger tribal members
today.

2.5 CONCLUSIONS

The Green Bay fishery is a vital resource that provides important ecological, economic, and
cultural services. As part of the Great Lakes, Green Bay is part of the largest area of fresh surface
water on earth and supports a diverse and significant fishery. Despite degradation brought on by
various human impacts, the fishery remains a vital resource used by commercial, sport, and tribal
fishermen. Fish from the Lower Fox River and Green Bay, supported by the diverse habitats
provided by the bay, comprise an important food source for piscivorous birds and mammals. The
importance of the fishery resources of the bay is reflected in the extensive efforts expended by
various government agencies to manage and protect the fishery resource of Green Bay.



CHAPTER 3
PCB PATHWAY DETERMINATION AND EXPOSURE

FOR FISHERY RESOURCES

This chapter discusses the pathways by which the fishery resources of the Lower Fox River/Green
Bay ecosystem have come to be exposed to PCBs released from Lower Fox River paper
companies. The chapter includes a PCB pathway determination (Section 3.1) and a description of
PCB exposure and accumulation in assessment area fish (Section 3.2).

3.1 PCB PATHWAY DETERMINATION

Pathway determination is one of the injury determination steps in the Department’s regulations for
conducting NRDAs at 43 CFR Part 11. A pathway is defined in the regulations as “the route or
medium through which oil or a hazardous substance is or was transported from the source of the
discharge or release to the injured resource” [43 CFR §11.14(dd)]. The pathway is determined by

either demonstrating the presence of the oil or hazardous substance in sufficient
concentrations in the pathway resource or by using a model that demonstrates that
the conditions existed in the route and in the oil or hazardous substance such that
the route served as the pathway [43 CFR §11.63(a)(2)].

The Trustees have published a PCB pathway determination report for the Lower Fox River/Green
Bay environment (Stratus Consulting Inc., 1999d). The Trustees based the pathway determination
on evaluations of the following:

� PCB releases into the Lower Fox River from paper company facilities

� PCB pathway models used in the Green Bay Mass Balance Study (GBMBS), a multi-
million dollar, multi-agency effort to understand and model the transport, fate, and
bioaccumulation of PCBs in the Lower Fox River and Green Bay

� PCB transport processes in the Lower Fox River and Green Bay, including downstream
transport in the Lower Fox River, water circulation patterns in Green Bay, and sediment
transport and deposition in the bay

� the spatial and temporal distributions of PCBs in Green Bay surface water, sediment, and
biota in relation to releases into the bay from the Lower Fox River



PCB PATHWAY DETERMINATION AND EXPOSURE � 3-2

� PCB congener patterns in Green Bay sediments compared with congener patterns in the
Lower Fox River and Lake Michigan.

The PCB pathway determination uses both measurements of PCBs in pathway media and the
results of the GBMBS models to determine PCB pathways in the system. The conclusions of the
PCB pathway determination are as follows (Stratus Consulting Inc., 1999d):

1. Paper manufacturing and processing facilities released large quantities of PCBs into the
Lower Fox River. An estimated 300,000 kg of PCBs have been released into the Lower
Fox River from paper company facilities. These releases are the primary PCB source into
the river and Green Bay.

2. The Fox River is the dominant source of PCBs to Green Bay. For example, mass balance
models show that in 1989-1990, the Fox River contributed 92% of the PCBs that entered
the bay from all tributary and atmospheric sources.

3. Surface water is the primary pathway by which PCBs are transported in the Lower Fox
River/Green Bay system.

4. Fox River PCBs are transported throughout Green Bay.

5. Surface water, sediment, plankton, and forage fish serve as PCB pathways for different
fish species of the Lower Fox River and Green Bay.

6. PCB concentrations in Green Bay have declined since the 1970s, but remain high because
of the environmental persistence and continued environmental release of PCBs.

7. PCBs are transported from Green Bay into Lake Michigan.

Figure 3-1, which is taken from the Trustees’ pathway report, presents a PCB exposure pathway
diagram for selected fish species in Green Bay. The pathway diagram shows that PCBs enter the
aquatic food chain from contaminated surface water and sediment. Fish are exposed to PCBs
through the food chain and through direct uptake from surface water and sediment. Elevated
concentrations of PCBs have been documented in the pathway resources shown in Figure 3-1,
including surface water, sediment, plankton, and forage fish (Connolly et al., 1992; Stratus
Consulting Inc., 1999d).

Another PCB pathway in the system is fish migration. Several fish species, including northern
pike, walleye, smallmouth bass, yellow perch, and lake sturgeon, have been documented to
migrate between the waters of Green Bay and tributaries to Green Bay (Cogswell, 1998;
Cogswell and Bougie, 1998; Green Bay Fisheries Resources Office, 1998). Fish migration has
also been documented between Green Bay and Lake Michigan (Wisconsin Department of Natural
Resources, 1996) and within Green Bay itself (U. S. Fish and Wildlife Service, 1998).
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Figure 3-1
GBMBS PCB Pathways in Lower Fox River/Green Bay System

(abiotic media are in brown, primary producers and invertebrates are in green,
and fish species are in blue)

Source: Stratus Consulting Inc., 1999d.
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This migration of contaminated biota may serve as a particularly important transport pathway for
natural resources on the reservation of the Oneida Tribe. The Oneida reservation is located
immediately west and southwest of the city of Green Bay, near the southern end of Green Bay.
The reservation is connected to the waters of the Lower Fox River and Green Bay through
several creeks that run through the reservation. These creeks include Duck Creek, which flows
through the reservation and enters Green Bay just northwest of the Fox River mouth, and
Dutchman’s Creek, which flows through the reservation and enters the Fox River a few miles
upstream of its mouth.

Several studies have shown that fish migrate from Green Bay up Duck Creek and into the
reservation, thereby transporting PCBs to the reservation. In a study conducted by the Service
between 1995 and 1998, fish marked with floy tags in Green Bay were found in Duck Creek
within the reservation boundaries, and fish marked in Duck Creek were found in Green Bay
(Cogswell, 1998; Cogswell and Bougie, 1998). For example, 46% of the northern pike tagged in
Duck Creek were recaptured in Green Bay. The species documented to migrate between Duck
Creek and Green Bay include northern pike, walleye, smallmouth bass, and yellow perch.

PCB concentrations measured in walleye, white sucker, and northern pike collected in 1998
confirm that fish from the reservation have elevated concentrations of PCBs (Battelle, 1999).
Average total PCB concentrations for fish from Duck Creek were 1199 ng/g (wet weight) in
walleye fillets and 535 ng/g in northern pike fillets. White suckers from Lancaster Brook, a
tributary to Duck Creek on the reservation, had an average whole-body total PCB concentration
of 1064 ng/g, and suckers from Dutchman Creek had an average whole-body total PCB
concentration of 325 ng/g. In addition, a mink captured in March 1999 along Silver Creek,
another tributary to Duck Creek, had a liver total PCB concentration of 40.42 )g/g (wet weight),
a concentration indicative of elevated PCB exposure (Eisler, 1986). Since fish typically comprise a
large portion of mink diet (U.S. EPA, 1993b), the mink exposure to PCBs probably results from
consumption of contaminated fish. Therefore, migration data document that fish move between
Duck Creek and Green Bay, and PCB concentration data in fish and mink indicate that the fish
migration from Green Bay up Duck Creek serves as a transport pathway for PCBs.

In conclusion, PCB pathways to fish were determined using both measures of PCBs in pathway
media and the results of transport models. PCB releases from Lower Fox River paper company
facilities are the primary source of PCBs to the Lower Fox River and Green Bay. PCBs released
from the facilities are transported throughout the river and bay, where fish are exposed to the
PCBs through the food chain and through direct contact with surface water and sediment.

3.2 PCB EXPOSURE AND ACCUMULATION IN FISH

Many fish species throughout the Lower Fox River and Green Bay are exposed to and accumulate
PCBs released from Fox River paper company facilities. Table 3-1 lists the fish species of the
Lower Fox River and Green Bay in which PCBs have been found. PCB 
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Table 3-1
Lower Fox River/Green Bay Fish Species in Which PCBs Have Been Measured

Species Lower Fox River Green Bay
Measured in Samples from Measured in Samples from

Alewife X X

Black bullhead X X

Black crappie X X

Bloater chub X

Bluegill X

Bowfin X

Brook trout X

Brown bullhead X X

Brown trout X

Burbot X

Carp X X

Channel catfish X X

Chinook salmon X X

Cisco/lake herring X

Coho salmon X

Common shiner X

Emerald shiner X

Flathead catfish X

Freshwater drum X

Gizzard shad X X

Golden shiner X

Greater redhorse X

Green sunfish X

Lake sturgeon X

Lake trout X

Lake whitefish X

Largemouth bass X

Longnose sucker X

Northern pike X X

Pumpkinseed X

Rainbow smelt X

Rainbow trout X

Redhorse sucker X
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Table 3-1 (cont.)
Lower Fox River/Green Bay Fish Species in Which PCBs Have Been Measured

Species Lower Fox River Green Bay
Measured in Samples from Measured in Samples from

Rock bass X

Sauger X

Sheepshead/drum X

Shorthead redhorse X

Smallmouth bass X X

Splake X

Spot-tailed shiner X

Troutperch X

Walleye X X

White bass X X

White perch X X

White sucker X X

Yellow perch X X

Sources: Stratus Consulting (1998); Wisconsin Department of Natural Resources sponsored database at
http://www.ecochem.net/FoxRiverDatabaseWeb/default.asp, downloaded July 1999.

accumulation has been documented in all levels of the aquatic food web, such as forage fish
(alewives, rainbow smelt), predators (walleye, brown trout, northern pike), and bottom feeders
(carp, white sucker), and in fish from a variety of habitats, including coastal wetlands, coastal
beaches, near-shore areas, and open water habitat (Connolly et al., 1992; Brazner and DeVita,
1998).

The PCB accumulation data for Fox River/Green Bay fish show several important features. First,
fish PCB concentrations are not uniform throughout the river and bay, but vary spatially. For
example, as part of the GBMBS, samples of six fish species (alewife, brown trout, carp, gizzard
shad, rainbow smelt, and walleye) were collected from numerous locations in the Lower Fox
River and Green Bay in 1989-1990 and analyzed for PCB congeners in whole-body samples
(Connolly et al., 1992). Sampling locations were grouped into six different zones, shown in Figure
3-2. Zone I is the Lower Fox River downstream of DePere Dam; Zones IIA and IIB are the
western and eastern halves, respectively, of the innermost portion of the bay; Zones IIIA and IIIB
are the western and eastern halves, respectively, of the rest of the inner bay; and Zone IV is the
outer bay (beyond Chambers Island).
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Figure 3-2
Fish Sampling Zones Used in Green Bay Mass Balance Study
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As an example of the spatial trend of PCBs in Lower Fox River/Green Bay fish, Figure 3-3 plots
the total PCB concentrations measured in walleye from the six different zones. Figure 3-3 shows
that PCB concentrations are highest in the Lower Fox River and decline with increasing distance
into the bay. More detailed analysis of data also shows that PCB concentrations within zones 2
and 3 along the eastern shore of the inner bay (zones 2B and 3B) are generally higher than those
along the western shore (zones 2A and 3A) (Stratus Consulting Inc., 1999d). Data collected by
the Service in 1996 on walleye and brown trout PCB concentrations show the same spatial
pattern (Stratus Consulting Inc., 1999d). This spatial pattern matches the spatial pattern of PCB
concentrations in surface water and sediment of the Lower Fox River/Green Bay, indicating the
PCB pathway link between surface water/sediment and fish (Stratus Consulting Inc., 1999d).

A second feature of PCB accumulation in assessment area fish is that PCB concentrations in
predatory fish, such as walleye and brown trout, tend to be higher than concentrations in the
forage fish on which they feed, such as alewives and rainbow smelt. Figure 3-4 compares PCB
concentrations in Green Bay walleye and brown trout with those in alewives and rainbow smelt.
Since PCBs tend to accumulate in fish lipid, the data are expressed as lipid-normalized PCB
concentrations (i.e., wet weight PCB concentration divided by fraction lipid in the sample) to
account for any variability in wet weight PCB concentrations between the species that is caused
by differences in lipid content alone. The figure shows that within each of the zones,
concentrations are consistently higher in walleye and brown trout, indicating biomagnification of
PCBs up the food chain. Therefore, top-level predatory fish tend to be the species that are the
most highly exposed to PCBs.

The assessment area data also provide information on the changes in fish PCB accumulation over
time. A detailed analysis of temporal trends of PCB concentrations in Green Bay fish is presented
in the Trustees’ report on PCB pathways (Stratus Consulting Inc., 1999d). The following
conclusions were reached:

� In general, PCB concentrations in Green Bay have declined since the 1970s, coinciding
with decreases in PCB releases from Lower Fox River paper companies.

� However, the persistent nature of PCBs in the environment and the widespread
contamination of the sediment in the river and bay mean that fishery resources will
continue to be exposed to PCBs for many years.

� PCB concentrations show a stronger and more consistent decline in forage fish
(e.g., yellow perch and perhaps alewife) than in predator fish (walleye and brown trout).
Possible explanations for this difference include shifts in walleye and brown trout diet over
time, and increased “lag time” for the reductions in PCBs to be detectable in the longer
lived predatory species.
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Figure 3-3
Total PCB Concentrations in Green Bay Walleye, 1989

(bars equal plus or minus one standard error about the mean;
zone locations are shown in Figure 3-2)

Source: Green Bay Mass Balance Study data from the Wisconsin Department of Natural Resources sponsored
database at http://www.ecochem.net/FoxRiverDatabaseWeb/default.asp, downloaded July 1999.

� PCB concentration declines are more prominent in Zone 2 than in zones 3 and 4. A
possible explanation for this trend is that the signal of decreased PCB loadings from the
Lower Fox River may take longer to reach the portions of the bay that are farther from the
river.

� PCB concentrations in fish beyond the innermost portion of the bay do not show a decline
between 1989 and 1996.
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Figure 3-4
Mean PCB Concentrations in Lower Fox River/Green Bay Forage Fish (alewife and

rainbow smelt) and Predatory Fish (walleye and brown trout), by Zone
(zone locations are shown in Figure 3-2)

Source: Green Bay Mass Balance Study data from the Wisconsin Department of Natural Resources sponsored
database at http://www.ecochem.net/FoxRiverDatabaseWeb/default.asp, downloaded July 1999.

� PCB transport pathways continue in the Lower Fox River/Green Bay system, and Green
Bay fish continue to be exposed to PCBs.

In conclusion, the transport of PCBs in surface water and sediments of the Lower Fox
River/Green Bay system results in PCB exposure of fish throughout the river and bay. The
accumulation of PCBs tends to be highest in predatory species and in areas of the river and bay
with the highest sediment and surface water PCB concentrations. Although some PCB
concentrations in some fish species from some areas have declined since the 1970s, the PCB
transport and exposure pathways continue to result in fish exposure to PCBs.



CHAPTER 4
INJURY ASSESSMENT APPROACH

This chapter describes the regulatory injury definitions used to assess injuries to fishery resources
and outlines the overall approach of the injury assessment. A brief description of the types of
adverse effects caused by PCBs is also included to provide background for the injury assessment
approach used.

4.1 OVERVIEW OF ADVERSE CHANGES IN FISH VIABILITY CAUSED BY PCBS

Exposure to PCBs can cause many different types of adverse effects on fish, including death,
cancer, deformities, impairments of the immune system and of the endocrine system, and
biochemical changes (Eisler, 1986; Safe, 1994). This section presents a brief overview of the
documented adverse effects of PCBs on fish viability. This information provides the background
for understanding the Trustees’ approach for assessing injuries resulting from adverse changes in
viability due to PCB exposure.

Death

Early life stages in fish are more sensitive to mortality effects of PCBs than are adult fish. PCBs
cause reduced egg hatchability and fry mortality at concentrations orders of magnitude less than
concentrations causing adult mortality (Nebeker et al., 1974; Eisler, 1986). In fish eggs, PCBs
accumulate in the lipid-rich yolk to concentrations that are typically much greater than those in the
surrounding water (Broyles and Noveck, 1979) and can be greater than those in the maternal fish
(Niimi, 1983). Many of the PCB toxic effects to fish embryos occur during absorption of the yolk
sac by developing fry (Walker et al., 1994). PCBs have been implicated as causative factors in
embryo mortality in Great Lakes fish, leading to reduced reproduction (Mac, 1988; Mac and
Schwartz, 1992; Mac et al., 1993).

Cancer

Although PCBs do not initiate the formation of cancerous tumors, it is well documented that they
promote or enhance formation of tumors initiated by other factors (Hendricks et al., 1990). For
example, rainbow trout that were exposed to PCBs showed a significantly higher incidence of
liver tumors induced by aflatoxin B  (a tumor initiator) than trout exposed to aflatoxin B  alone1 1

(Hendricks et al., 1981). The liver is generally the predominant site for fish tumors or pre-tumors
that are initiated or promoted by contaminants (Baumann, 1992a; Baumann, 1992b). Higher
incidences of liver tumors in fish exposed to contaminants, including PCBs, have been
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demonstrated in both field and laboratory studies (Teh et al., 1997a). The results of studies on the
tumor promotion of PCBs in fish are consistent with the more extensive body of scientific
literature on tumor promotion in mammals (see Silberhorn et al., 1990 for a review).

Deformities

PCB congeners that are structurally similar to 2,3,7,8-tetrachloro-p-dibenzo-dioxin (TCDD) have
been shown to cause deformities in developing fish fry (Walker and Peterson, 1992). These
deformities, like embryo mortality, occur primarily during the yolk sac absorption stage. They
include internal whole organ and soft tissue malformations such as edema of the yolk sac (Walker
et al., 1991) and hemorrhaging in various organs (Spitsbergen et al., 1991; Walker and Peterson,
1992), skeletal deformities such as domed skulls and craniofacial deformities (Walker et al.,
1994), and overt external malformations such as opercular defects (Helder, 1980; Helder, 1981).

The development of these deformities often precedes embryo mortality during the yolk sac
absorption stage (Walker et al., 1994). The occurrence of these deformities has been documented
in a variety of fish species, including lake trout, rainbow trout, northern pike, brook trout,
Japanese medaka, mummichog, and zebrafish (Walker et al., 1994).

Immune System Impairment

PCBs can also impair the functioning of the immune system in fish. Adverse effects on fish
immune systems exposed to PCBs include significantly reduced antibody levels (Thuvander and
Carlstein, 1991), reduced immune cell activity (Jones et al., 1979; Arkoosh et al., 1994; Rice and
Schlenk, 1995; Rice et al., 1996), and reduced resistance to introduced bacteria (Jones et al.,
1979). This suppression of the immune system can result in increased susceptibility of fish to
disease, parasitism, and cancer (Khan and Thulin, 1991; Zelikoff, 1994; Anderson and Zeeman,
1995).

Endocrine System Impairment

The disrupting effects of PCBs on animal endocrine systems has been extensively studied and
documented in mammals (Safe, 1994). Effects on estrogen production or activity are the most
studied endocrine system effects caused by chemicals such as PCBs (Gillesby and Zacharewski,
1998). PCB congeners (or their metabolites) can be estrogen mimics, promoters, or inhibitors, or
they can alter the levels of or compete with thyroid hormones in the blood (Hansen, 1994;
Gillesby and Zacharewski, 1998). In fish, PCB modulation of estrogen responsiveness can result
in inhibition or induction of egg yolk synthesis (Anderson et al., 1998). Field studies on fish have
used increased vitellogenin, a protein involved in egg formation, in male carp (Folmar et al., 1996)
and rainbow trout (Harries et al., 1996) as indications of exposure to environmental contaminants
that disrupt endocrine systems.
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These alterations of the endocrine system can affect fish reproduction by affecting sex
determination and sex ratios (Matta et al., 1998), delaying maturity (Munkittrick et al., 1997),
decreasing fertility and egg production in females (Arcand-Hoy and Benson, 1998), causing
gonadal abnormalities (Matta et al., 1998), or reducing testicular growth in males (Jobling et al.,
1996). In addition, potentiation of estrogen responsiveness may also enhance tumorigenesis in fish
(Teh and Hinton, 1998).

Biochemical Changes

PCB exposure can cause measurable biochemical changes in the liver and other organs of fish.
Induction of the enzyme cytochrome P4501A (CYP1A), a protein involved in the metabolism of
planar aromatic hydrocarbons, is a hallmark of exposure to PCBs (Safe, 1990; Stegeman and
Hahn, 1994). Numerous field studies have documented changes in the level of induction of this
enzyme in fish in response to contaminant exposure (Van Der Oost et al., 1991; Sleiderink et al.,
1995; Eggens et al., 1996; Schrank et al., 1997). Induction or suppression of the cytochrome
P450 activity in fish can have deleterious consequences to fish health. For example, induction of
this enzyme system is linked to tumorigenesis via metabolic activation (Stegeman and
Hahn, 1994).

4.2 INJURY DEFINITIONS AND M EASURES

4.2.1 Injury Definitions

Injuries to fishery resources were assessed according to the definitions of injury in the
Department’s NRDA regulations. Specifically, the injury definitions state that fishery resources
have been injured as a result of the release of a hazardous substance if the concentration of the
substance is sufficient to

< exceed action or tolerance levels established under section 402 of the Food, Drug and
Cosmetic Act, 21 U.S.C. 342, in edible portions of organisms [43 CFR § 11.62(f)(1)(ii)];
or

< exceed levels for which an appropriate State health agency has issued directives to limit or
ban consumption of such organism [43 CFR § 11.62(f)(1)(iii)]; or

< cause the biological resource or its offspring to have undergone at least one of the
following adverse changes in viability: death, disease, behavioral abnormalities, cancer,
genetic mutations, physiological malfunctions (including malfunctions in reproduction), or
physical deformations [43 CFR § 11.62(f)(1)(i)].
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4.2.2 Injury Measures

For the injury definition related to exceedences of action or tolerance levels in edible portions,
PCB concentrations measured in fish fillets were compared to the PCB tolerance level established
by the FDA under section 402 of the Food, Drug and Cosmetic Act, 21 U.S.C. 342. For the injury
definition of exceedence of levels for which an appropriate State health agency has issued
directives to limit or ban consumption, the injury measure is documentation of State fish
consumption advisories because of PCB contamination.

The injury definition related to adverse changes in viability can be demonstrated by measuring a
biological response that meets the following criteria [43 CFR § 11.62 (f)(2)(i-iv)]:

< The biological response is often the result of exposure to . . . hazardous substances.

< Exposure to . . . hazardous substances is known to cause this biological response in free-
ranging organisms.

< Exposure to . . . hazardous substances is known to cause this biological response in
controlled experiments.

< The biological response measurement is practical to perform and produces scientifically
valid results.

Several biological responses and measures have already been determined in the Department's
regulations to meet these four criteria. The following biological responses and measurements are
identified in the Department’s regulations as meeting the four criteria and were used in the
Trustees’ injury assessment:

1. Death (mortality) injuries were evaluated through the use of laboratory toxicity testing
[43 CFR § 11.62(f)(4)(i)(A)].

2. Cancer injuries were evaluated through measurement of fish neoplasia [43 CFR §
11.62(f)(4)(iv)(E)].

3. Physiological malfunction injuries were evaluated by assessing impacts to fish
reproduction [43 CFR § 11.62(f)(4)(v)(E)].

4. Physical deformation injuries were evaluated through examination of:

R overt external malformations [43 CFR § 11.62(f)(4)(vi)(A)]
R skeletal deformities [43 CFR § 11.62(f)(4)(vi)(B)]
R internal whole organ and soft tissue malformations [43 CFR § 11.62(f)(4)(vi)(C)]
R histopathological lesions [43 CFR § 11.62(f)(4)(vi)(D)].
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In addition, three biological responses that meet the four criteria but are not specifically listed in
the Department’s regulations for conducting NRDA were also used by the Trustees in the fish
injury assessment: immune system impairment, endocrine system impairment, and biochemical
changes. Documentation that these three biological responses meet the four acceptance criteria
for injury determination at 43 CFR § 11.62 (f)(2)(i-iv) is provided below.

Criterion 1: The biological response is often the result of exposure to the hazardous substance.

Although all three of the biological responses, immune system impairment, endocrine system
impairment, and biochemical changes, can be caused by environmental factors other than PCBs,
their occurrence as a direct result of PCB exposure has been well established in both field and
controlled studies, as described below. The injury assessment approach, described in the following
section, used measurements of the biological responses in control areas to account for any
baseline incidence of the responses potentially caused by other factors.

Criterion 2: Exposure to the hazardous substance causes the biological response in free-ranging
organisms.

The occurrence of immune system impairment in fish exposed to PCBs in the field has been well
documented (Zelikoff, 1994; Anderson and Zeeman, 1995; Zelikoff et al., 1996 ). For endocrine
system impairment, field studies have documented an increase in vitellogenin in male carp (Folmar
et al., 1996) and rainbow trout (Harries et al., 1996) as indications of exposure to environmental
contaminants that disrupt estrogen production or activity. For biochemical changes, numerous
field studies have documented changes in the level of induction of the P4501A enzyme in
response to organic contaminant exposure, including PCBs (Van Der Oost et al., 1991; Sleiderink
et al., 1995; Eggens et al., 1996; Schrank et al., 1997).

Criterion 3: Exposure to the hazardous substance causes the biological response in controlled
experiments.

Controlled studies have documented numerous adverse effects on the immune system of fish as a
result of PCB exposure, including reduced antibody levels (Thuvander and Carlstein, 1991),
reduced immune cell activity (Jones et al., 1979; Arkoosh et al., 1994; Rice and Schlenk, 1995;
Rice et al., 1996), and reduced resistance to introduced bacteria (Jones et al., 1979). Effects on
estrogen production or activity as a manifestation of adverse endocrine system effects resulting
from PCB exposure has been well documented (Gillesby and Zacharewski, 1998). Numerous
controlled studies have established that the biochemical change of P4501A enzyme induction is a
hallmark of PCB exposure (Safe, 1990; Stegeman and Hahn, 1994).
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Criterion 4: The biological response measurements is practical to perform and produces
scientifically valid results.

The references cited under the first three criteria document both the practicality and the scientific
validity of the three responses.

4.3 INJURY ASSESSMENT APPROACH

The fish injury assessment was conducted in accordance with the Assessment Plan [61 FR 43558]
and addenda [62 FR 33804; 63 FR 25144]. The injury assessment approach described here is for
the assessment of injuries to the fishery resources resulting from exposure to PCBs released from
Lower Fox River paper companies. However, the fish injury assessment is closely related to the
injury assessment for the surface water/sediment resource of the assessment area. The surface
water/sediment resource provides habitat services to fish and is a critical pathway component for
PCB exposure to fish, and therefore the surface water/sediment resource can be injured if the
habitat service it provides to fish is adversely affected [43 CFR § 11.62(b)(1)(v)]. Injuries to
surface water/sediment resources in providing habitat for fish are assessed in a separate Trustee
report (Stratus Consulting Inc., 1999c).

4.3.1 Fish Consumption Advisories and FDA Tolerance Level Exceedences

For injuries to fish based on the presence of fish consumption advisories, the Trustee conducted a
thorough evaluation of the procedures, methods, and underlying data used by the appropriate
agencies of Wisconsin and Michigan in establishing the advisories. The evaluation, which is
presented in Chapter 5 of this report, included consideration of:

< fish sampling and analytical chemistry methods

< procedures for proposing, reviewing, and issuing fish consumption advisories within each
state

< the history of the fish consumption advisory program in each state

< PCB concentrations used as threshold criteria for establishing advisories and a comparison
of measured PCB concentrations to the criteria

< types of advisories issued

< contaminants responsible for the advisories.
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The evaluation of fish consumption advisory injuries encompassed the Lower Fox River, the
Wisconsin and Michigan waters of Green Bay, and the Wisconsin and Michigan waters of
northern Lake Michigan. All fish species were included in the evaluation and injury assessment.

For evaluating injuries related to exceedences of the FDA tolerance level for PCBs in fish tissue,
the Service compared available fish tissue PCB concentration data from the Lower Fox River and
Green Bay with the FDA tolerance level.

The results of the injury assessment of fish consumption advisories and FDA tolerance level
exceedences were published in a report issued to the public in 1998 (Stratus Consulting Inc.,
1998). Chapter 5 of this report summarizes the results of that report, and includes an update of
fish consumption advisory injuries through 1999.

4.3.2 Overview of Assessment of Adverse Changes to Fish Viability

This section briefly describes the overall approach and process used to assess adverse changes to
viability injuries. Two general types of adverse changes to fish viability were assessed: adverse
effects on fish health, and adverse effects on fish reproduction. Table 4-1 summarizes the specific
injury categories, fish species, injury endpoints, and primary data sources used in the assessment.

The overall approach was based on supplementing available site-specific and literature information
with data not previously available. Adverse effects on fish health first involved a preliminary study
of walleye, brown trout, and lake trout. In 1996 the Service conducted a small-scale,
reconnaissance survey of possible adverse health effects on these species. Walleye were collected
from the Lower Fox River downstream of DePere dam and from Green Bay, brown trout were
collected from Green Bay, and lake trout were collected from Lake Michigan along the Door
Peninsula, near the mouth of Green Bay. Individual fish were tested for various fish health
endpoints, as listed in Table 4-1. Details of the 1996 study methods and results are contained in
Hagler Bailly Services Inc. (1997a), Teh et al. (1997b), and Stratus Consulting (1999a). The
results of the 1996 fish health reconnaissance study indicated that adverse health effects may be
occurring to walleye in the assessment area and that additional, more detailed work was
warranted. The 1996 data did not indicate adverse effects on the health of brown trout and lake
trout, so no further work was conducted on health injuries for these two species.

Therefore, in 1997 the Service conducted a more comprehensive study of health effects on Lower
Fox River/Green Bay walleye. The 1997 work included a much larger sample size than the 1996
work, samples from different control areas for comparison, and a broader range of health effect
measurements (see Table 4-1).
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Table 4-1
Overview of Injury Assessment of Adverse Changes in Fish Viability

General Type
of Adverse Injury Category Species Primary

Effect [43 CFR §11.62(f)(4)] Assessed Injury Endpoint Data Sources

Fish health Cancer Walleye Liver tumors and pre- 1996-1997
Brown trout tumors in adult fish Service NRDA
Lake trout study

Disease Walleye Incidence of diseases 1996-1997
in adult fish Service NRDA

study

Physiological Walleye Immunosuppression, 1996-1997
malfunction endocrine disruption, Service NRDA

liver biochemistry in study
adult fish

Brown trout Immunosuppression, 1996-1997
Lake trout liver biochemistry in Service NRDA

adult fish study

Physical deformation Walleye Lesions in various 1996-1997
Brown trout organs of adult fish Service NRDA
Lake trout study

Fish Death Lake trout Embryomortality 1996-1998
reproduction USGS study;

historical data

Physical deformation Lake trout Deformities in 1996-1998
embryos USGS study;

historical data

The results of the 1996-1997 walleye health investigations are presented in a report issued to the
public by the Service in 1999 (Stratus Consulting Inc., 1999a). Chapter 6 of this report presents
an injury determination based on the results given in that report, and includes an update of
measurements of PCB concentrations in liver tissues.

In addition to the fish health studies, adverse changes in reproduction were assessed for lake
trout. Among the fish species studied to date, lake trout are the most sensitive to early life stage
mortality induced by PCBs and other similar organochlorine compounds (details provided in
Chapter 7). The assessment of embryo mortality and embryo deformity injuries to lake trout was
based on historical data and other information from the scientific literature, studies of Lake
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Michigan lake trout reproduction conducted by the USGS from 1996-1998, and supplemental
NRDA laboratory toxicity studies conducted by the USGS in 1996-1998. The injury assessment
to lake trout is provided in Chapter 7 of this report.

The Service also considered assessing reproductive injuries to lake sturgeon, a federally
threatened species. In 1996 the Service attempted to collect spawning lake sturgeon from the
Lower Fox River downstream of DePere Dam, but efforts were not successful. No additional
injury assessment work was conducted on lake sturgeon because of these sampling difficulties.

The species selected for assessment of adverse viability injuries, walleye, brown trout, and lake
trout, are top-level predatory species and are therefore expected to be among the more highly
exposed species to PCBs in the system. Lake trout are the most sensitive species tested to date to
the adverse reproductive effects of PCBs. However, the relative sensitivity of these three species
selected by the Service for the injury assessment relative to all other species in the Lower Fox
River/Green Bay assessment area is unknown, particularly for the injury endpoints related to fish
health. Therefore, it is possible that adverse effects on viability could be occurring to fish species
in the assessment area that were not selected for focused study.



CHAPTER 5
FISH CONSUMPTION ADVISORY INJURIES

5.1 INTRODUCTION

This chapter determines and summarizes injuries to fish in the Lower Fox River, Green Bay, and
northern Lake Michigan resulting from exceedences of: (1) tolerances for PCBs established by the
Food and Drug Administration (FDA) under the Food, Drug, and Cosmetic Act [43 CFR
11.62(f)(1)(ii)]; and (2) PCB levels for which Wisconsin and Michigan have issued directives to
limit or ban consumption [43 CFR 11.62(f)(1)(iii)]. This chapter begins by summarizing a
comprehensive 1998 Service report on fish consumption advisories in the Lower Fox River/Green
Bay Assessment Area (Stratus Consulting Inc., 1998) and goes on to update the findings of that
report with Wisconsin and Michigan’s advisories for 1998 and 1999.

5.2 SUMMARY OF 1998 FISH CONSUMPTION ADVISORY REPORT

In November 1998, the Service released a report entitled “Fish Consumption Advisories in the
Lower Fox River/Green Bay Assessment Area.” That report presented a detailed examination of
the injuries to fishery resources resulting from fish consumption advisories issued by State
agencies and from exceedences of FDA tolerance levels for PCBs (Stratus Consulting Inc., 1998).

Tables 5-1 to 5-3, taken from the Service’s report, summarize the results of the injury evaluation
based on exceedences of the FDA tolerance level for PCBs. This analysis demonstrated that the
FDA tolerance was exceeded in multiple fish species in the assessment area: 13 species in the
Lower Fox River (Table 5-1); 23 species in Green Bay (Table 5-2); and 6 species in northern
Lake Michigan (Table 5-3). Exceedences occurred since the first sample collections in the 1970s
and continued through 1995 (the most recent year analyzed in the Service’s 1998 report).

Tables 5-4 to 5-6, taken from the Service’s report, summarize Michigan and Wisconsin PCB fish
advisories. In the tables, advisories are divided into six time periods that reflect when major
changes in advisories took place. Advisories were first issued in 1976 and have continued to the
present. Fish consumption advisories have been issued by Wisconsin for 15 species in the Lower
Fox River (Table 5-4), and by Wisconsin or Michigan for more than 20 species in Green Bay and
Lake Michigan (Tables 5-5 and 5-6).
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Table 5-1
Summary of Fish Species in the Lower Fox River

that Have Exceeded the FDA Tolerance  for PCBs, 1971-1995a

1971-1974 1975-1979 1980-1984 1985-1989 1990-1995

Brown bullhead ! " !

Carp ! ! ! !

Channel catfish " !

Chinook salmon !

Flathead catfish !

Gizzard shad !

Northern pike ! " ! "

Sheepshead/drum ! !

Walleye ! ! ! !

White bass " ! !

White perch !

White sucker ! " !

Yellow perch ! "

! = At least one sample exceeded FDA tolerance for PCBs.
" = No samples exceeded FDA tolerance for PCBs.
A blank cell means that the species was not analyzed for PCBs during that time period.
a. Samples collected through 1984 were compared to the FDA tolerance of 5 mg/kg in edible tissue; samples
collected after 1984 were compared to the revised FDA tolerance of 2 mg/kg in edible tissue.

Source: Stratus Consulting Inc. (1998).
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Table 5-2
Summary of Fish Species in Green Bay

that Have Exceeded the FDA Tolerance  for PCBs, 1971-1995a

1971-1974 1975-1979 1980-1984 1985-1989 1990-1995

Alewife " !

Brook trout " ! "

Brown bullhead ! "

Brown trout ! ! !

Carp ! ! ! !

Channel catfish !

Chinook salmon ! ! "

Cisco/lake herring ! "

Coho salmon !

Gizzard shad !

Lake sturgeon !

Lake trout ! ! !

Longnose sucker ! !

Northern pike ! ! "

Rainbow trout ! "

Smallmouth bass " ! " "

Splake ! !

Walleye " ! ! !

White bass ! "

White perch !

White sucker ! " "

Whitefish ! " " "

Yellow perch ! " "

! = At least one sample exceeded FDA tolerance for PCBs.
" = No samples exceeded FDA tolerance for PCBs.
A blank cell means that the species was not analyzed for PCBs during that time period.
a. Samples collected through 1984 were compared to the FDA tolerance of 5 mg/kg in edible tissue; samples
collected after 1984 were compared to the revised FDA tolerance of 2 mg/kg in edible tissue.

Source: Stratus Consulting Inc. (1998).
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Table 5-3
Summary of Fish Species in Northern Lake Michigan

that Have Exceeded the FDA Tolerance  for PCBs, 1971-1995a

1971-1974 1975-1979 1980-1984 1985-1989 1990-1995

Brook trout " !

Brown trout ! ! ! !

Chinook salmon ! ! ! ! !

Coho salmon ! "

Lake trout ! ! ! !

Whitefish ! " ! "

! = At least one sample exceeded FDA tolerance for PCBs.
" = No samples exceeded FDA tolerance for PCBs.
A blank cell means that the species was not analyzed for PCBs during that time period.
a. Samples collected through 1984 were compared to the FDA tolerance of 5 mg/kg in edible tissue; samples
collected after 1984 were compared to the revised FDA tolerance of 2 mg/kg in edible tissue.

Source: Stratus Consulting Inc. (1998).
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Table 5-4
Summary of Fish Species in the Lower Fox River for Which PCB Consumption

Advisories Have Been Issued by Wisconsin, 1976-1997

1976-1977 1978-1983 1984 -1986 1987-1994 1995-1996 1997a b

Black crappie ! !

Bluegill !    !

Bullhead  !  ! !  

Carp ! ! ! ! ! !

Channel catfish  !  ! ! !

Drum  !  ! !  

Northern pike  ! ! ! ! !

Rock bass  !    !

Sheepshead  !    !

Smallmouth bass  !    !

Walleye  ! ! ! ! !

White bass  ! ! ! ! !

White perch  !    !

White sucker  !  ! ! !

Yellow perch  !    !

! = Consumption advisory (either “no consumption” or “limit consumption”) issued.
A blank cell means no advisory was issued.
a. From 1978 to 1983, a “limit consumption” advisory was issued for all species in the Lower Fox River.
b. For 1984, the advisories are taken from the Health Guide (Wisconsin Department of Natural Resources,
1976-1994).

Source: Stratus Consulting Inc (1998).



FISH CONSUMPTION ADVISORY INJURIES < 5-6

Table 5-5
Summary of Fish Species in Green Bay for Which PCB Consumption Advisories Have

Been Issued by Wisconsin or Michigan, 1976-1997

1976-1977 1978-1983 1984 -1986 1987-1994 1995-1996 1997a

Brook trout See advisory for trout ! ! ! !

Brown trout See advisory for trout ! ! ! !

Bullheads  !     

Carp ! ! ! ! ! !

Catfish  ! !   !

Chinook salmon See advisory for salmon ! ! ! !

Coho salmon See advisory for salmon !    

Lake trout See advisory for trout !   !

Northern pike   ! ! ! !

Rainbow trout See advisory for trout ! ! ! !

Salmon ! ! See advisories for coho and chinook salmon

Smallmouth bass   !   !

Splake    ! ! !

Sturgeon    ! ! !

Trout ! ! See advisories for lake, brown, brook, and rainbow trout

Walleye   ! ! ! !

White bass   ! ! ! !

White perch      !

White sucker   ! !  !

Whitefish  ! !   !

Yellow perch      !

! = Consumption advisory (either “no consumption” or “limit consumption”) issued.
A blank cell means no advisory was issued.
a. For 1984, the Wisconsin advisories are taken from the Health Guide (Wisconsin Department of Natural
Resources, 1976-1994).
The table excludes advisories issued by Michigan for mercury only.

Source: Stratus Consulting Inc. (1998).
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Table 5-6
Summary of Fish Species in Lake Michigan (Wisconsin waters and Northern Lake

Michigan north of Frankfort, Michigan) for Which PCB Consumption Advisories Have
Been Issued by Wisconsin or Michigan, 1976-1997

1976-1977 1978-1983 1984 -1986 1987-1994 1995-1996 1997a

Brook trout See advisory for trout !    

Brown trout See advisory for trout ! ! ! !

Carp ! ! ! ! ! !

Catfish  ! ! ! ! !

Chinook salmon See advisory for salmon ! ! ! !

Chubs      !

Coho salmon See advisory for salmon ! ! !  

Lake trout ! ! ! ! ! !

Longnose suckers    ! ! !b

Northern pike   !    

Rainbow trout or ! ! !   !
steelhead

Salmon ! ! See advisories for chinook and coho salmon

Smallmouth bass   !    

Smelt      !

Sturgeon      !

Trout ! ! See advisories for lake, brown, brook, and rainbow
trout

Walleye   !    

White bass   !    

White sucker   !    

Whitefish   !   !

Yellow perch      !

! = Consumption advisory (either “no consumption” or “limit consumption”) issued.
A blank cell means no advisory was issued.
a. For 1984, the advisories are taken from the Health Guide (Wisconsin Department of Natural Resources,
1976-1994).
b. Advisory for longnose suckers issued for Little Bay de Noc only.
The table excludes advisories issued by Michigan for mercury only.

Source: Stratus Consulting Inc. (1998).
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5.3 FISH CONSUMPTION ADVISORY UPDATE

The Service’s 1998 report included analysis of Wisconsin and Michigan fish consumption
advisories through 1997. Both states issued advisories in 1998 and 1999, and this section updates
the findings of the Service’s 1998 report with these more recent fish consumption advisories.
Wisconsin’s advisories underwent very little change between 1997 and 1999; Michigan, however,
introduced a new format for its advisories in 1998 and included more species in 1998 and 1999.

5.3.1 Wisconsin Fish Consumption Advisories

Wisconsin fish consumption advisories for 1998 and 1999 are summarized by location in
Tables 5-7 through 5-10 (1997 advisories are included for comparison). The PCB advisory, which
is listed in separate charts from the advisory for mercury, underwent only a few changes from
1997 to 1999. White perch was added to the consumption advisory for the Lower Fox River from
DePere Dam to Green Bay in 1999 (Table 5-8). In 1998, size classifications for brown trout and
chinook salmon changed in the advisory for Wisconsin waters of Green Bay (Table 5-9); these
changes made the advisory for chinook salmon more restrictive and the advisory for brown trout
less restrictive. In the same year and location, the advisory for white perch also became less
restrictive, changing from no consumption to one meal per two months or six meals per year.

In 1999, Wisconsin introduced a new method of communicating fish consumption advisories to
the public (M. Young, Wisconsin State Division of Health, pers. comm., 1999). The Wisconsin
State Division of Health, concerned that women and people of color were at risk because they
were not as likely to know of the advisories, initiated a program to communicate the advisories to
these groups of people. As part of this effort, signs conveying the information from the advisories
were placed around bodies of water most frequently fished by people of color. The Fox River and
Green Bay were specifically targeted, and an estimated 30 signs were posted in this region. Two
signs were posted at each location, one conveying the PCB advisory and the other conveying the
mercury advisory. The language for the signs was simplified from the printed fish consumption
advisory distributed to the public, but advisory information was the same. In addition, posters
were printed for display in places such as medical and health offices and nature centers. Although
in the first year of the program signs were posted in English only, the Division of Health has plans
to expand the program to include signs translated into Spanish and Hmong (M. Young, Wisconsin
State Division of Health, pers. comm., 1999).
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Table 5-7
Wisconsin Fish Consumption Advisories for the Lower Fox River from

Little Lake Butte des Morts to the Dam at DePere

Species Size 1997 1998 1999

Carp All ! ! !

Northern pike All 1 per mn 1 per mn 1 per mn

Smallmouth bass All 1 per mn 1 per mn 1 per mn

Walleye All 1 per mn 1 per mn 1 per mn

White bass All 1 per mn 1 per mn 1 per mn

White perch All 1 per mn 1 per mn 1 per mn

Yellow perch All 1 per wk 1 per wk 1 per wk

! = No consumption.
1 per wk = 1 meal per week or 52 meals per year.
1 per mn = 1 meal per month or 12 meals per year.

Sources: Wisconsin Division of Health and Wisconsin Department of Natural Resources (1997; 1998; 1999).



FISH CONSUMPTION ADVISORY INJURIES < 5-10

Table 5-8
Wisconsin Fish Consumption Advisories for the Lower Fox River from the Mouth at

Green Bay up to DePere Dam

Species Size 1997 1998 1999

Black crappie <9" 1 per mn 1 per mn 1 per mn

>9" 1 per 2 mn 1 per 2 mn 1 per 2 mn

Bluegill All 1 per mn 1 per mn 1 per mn

Carp All ! ! !

Channel catfish All ! ! !

Northern pike <25" 1 per mn 1 per mn 1 per mn

>25" 1 per 2 mn 1 per 2 mn 1 per 2 mn

Rock bass All 1 per mn 1 per mn 1 per mn

Sheepshead <10" 1 per mn 1 per mn 1 per mn

10-13" 1 per 2 mn 1 per 2 mn 1 per 2 mn

>13" ! ! !

Smallmouth bass All 1 per 2 mn 1 per 2 mn 1 per 2 mn

Walleye <16" 1 per mn 1 per mn 1 per mn

16-22" 1 per 2 mn 1 per 2 mn 1 per 2 mn

>22" ! ! !

White bass All ! ! !

White perch All   1 per 2 mna

White sucker All 1 per 2 mn 1 per 2 mn 1 per 2 mn

Yellow perch All 1 per mn 1 per mn 1 per mn

! = No consumption.
A blank cell means no advisory was issued.
1 per wk = 1 meal per week or 52 meals per year.
1 per mn = 1 meal per month or 12 meals per year.
1 per 2 mn = 1 meal every 2 months or 6 meals per year.
a. Species added to advisory in 1999.

Sources: Wisconsin Division of Health and Wisconsin Department of Natural Resources (1997; 1998; 1999).
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Table 5-9
Wisconsin Fish Consumption Advisories for Wisconsin Waters of Green Bay South of

Marinette and its Tributaries (except the Fox River) including the Menominee, Oconto,
and Peshtigo Rivers from Their Mouths Up to the First Dam

Species Size 1997 1998 1999
Brown trout <14" 1 per mn NA NAa

14-21" 1 per 2 mn NA NA
>21" ! NA NA
<17" NA 1 per mn 1 per mn

17-28" NA 1 per 2 mn 1 per 2 mn
>28" NA ! !

Carp All ! ! !
Channel catfish All 1 per 2 mn 1 per 2 mn 1 per 2 mn
Chinook salmon <29" 1 per wk NA NAa

>29" 1 per mn NA NA
<30" NA 1 per mn 1 per mn
>30" NA 1 per 2 mn 1 per 2 mn

Northern pike <22" 1 per wk 1 per wk 1 per wk
>22" 1 per mn 1 per mn 1 per mn

Rainbow trout All 1 per mn 1 per mn 1 per mn
Smallmouth bass All 1 per mn 1 per mn 1 per mn
Splake <16" 1 per mn 1 per mn 1 per mn

16-20" 1 per 2 mn 1 per 2 mn 1 per 2 mn
>20" ! ! !

Sturgeon All ! ! !
Walleye <17" 1 per mn 1 per mn 1 per mn

17-26" 1 per 2 mn 1 per 2 mn 1 per 2 mn
>26" ! ! !

White bass All ! ! !
Whitefish All 1 per 2 mn 1 per 2 mn 1 per 2 mn
White perch All ! 1 per 2 mn 1 per 2 mn
White sucker All 1 per mn 1 per mn 1 per mn
Yellow perch All 1 per wk 1 per wk 1 per wk
! = No consumption.
1 per wk = 1 meal per week or 52 meals per year.
1 per mn = 1 meal per month or 12 meals per year.
1 per 2 mn = 1 meal every 2 months or 6 meals per year.
NA = Not applicable, due to change in size criteria.
a. Size criteria changed from 1997 to 1998.

Sources: Wisconsin Division of Health and Wisconsin Department of Natural Resources (1997; 1998; 1999).
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Table 5-10
Wisconsin Fish Consumption Advisories for the Wisconsin Waters of Lake Michigan and

its Tributaries up to the First Dam, including the Root River, Milwaukee River,
Sheboygan River, Manitowoc River, and Kewaunee River

Species Size 1997 1998 1999

Brown trout <22" 1 per mn 1 per mn 1 per mn

>22" 1 per 2 mn 1 per 2 mn 1 per 2 mn

Chinook salmon <30" 1 per mn 1 per mn 1 per mn

>30" 1 per 2 mn 1 per 2 mn 1 per 2 mn

Chubs All 1 per mn 1 per mn 1 per mn

Coho salmon All 1 per mn 1 per mn 1 per mn

Lake trout <23" 1 per mn 1 per mn 1 per mn

23-27" 1 per 2 mn 1 per 2 mn 1 per 2 mn

>27" ! ! !

Rainbow trout <17" 1 per wk 1 per wk 1 per wk

>17" 1 per mn 1 per mn 1 per mn

Smelt All 1 per wk 1 per wk 1 per wk

Whitefish <19" 1 per wk 1 per wk 1 per wk

19-25" 1 per mn 1 per mn 1 per mn

>25" 1 per 2 mn 1 per 2 mn 1 per 2 mn

Yellow perch All 1 per wk 1 per wk 1 per wk

! = No consumption.
1 per wk = 1 meal per week or 52 meals per year.
1 per mn = 1 meal per month or 12 meals per year.
1 per 2 mn = 1 meal every 2 months or 6 meals per year.

Sources: Wisconsin Division of Health and Wisconsin Department of Natural Resources (1997; 1998; 1999).
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5.3.2 Michigan Fish Consumption Advisories

Michigan fish consumption advisories for 1998 and 1999 are summarized by location in Tables 5-
11 through 5-13 (1997 advisories are included for comparison). Unlike Wisconsin advisories,
which contain separate charts for PCBs and mercury, Michigan advisories contain a single chart
within which contaminants are specified for each species. Most species in 1997, 1998, and 1999
were cited for PCBs only, with the following exceptions: Green Bay walleye in all three years
were cited for PCBs and mercury; Lake Michigan walleye in 1998 and 1999 were cited for PCBs
and mercury; Lake Michigan whitefish in 1998 were cited for PCBs and chlordane; Lake
Michigan whitefish in 1999 were cited for PCBs, dioxins, and chlordane; Lake Michigan lake
trout in 1999 were cited for PCBs and chlordane; and Little Bay de Noc smallmouth bass in 1999
were cited for PCBs and mercury.

In 1998 and 1999, Michigan continued to release its fish consumption advisory to the public in
pamphlet format. However, between 1997 and 1998, the state introduced a new format for its
consumption guidelines. The new format, implemented in 1998 and continued into 1999, gives
more categories of advisory levels and separates consumers into two groups: (1) the general
population, including men, boys over the age of 15, and women who are beyond childbearing
years; and (2) women and children, including women who are pregnant or breastfeeding, women
who intend to have children, girls over the age of 15, and all children under the age of 15. The
new format allows for more specificity in application of advisories.

Several species were added to the Michigan advisory in 1998 as follows: (1) burbot, chinook
salmon, whitefish, white perch, white sucker, and yellow perch were added to the advisory for
Green Bay; (2) burbot and smallmouth bass were added to the advisory for Little Bay de Noc; and
(3) chinook salmon, coho salmon, rainbow trout, smelt, whitefish, and yellow perch were added
to the advisory for Lake Michigan north of Frankfurt. Brook trout, removed from the Green Bay
advisory in 1998, was the only species removed from any location in the 1998 and 1999
advisories.

Additional species were added to the Michigan advisory in 1999 as follows: (1) longnose sucker
and smallmouth bass were added to the advisory for Green Bay; and (2) northern pike and white
sucker were added to the advisory for Little Bay de Noc. For Green Bay, there were no other
changes in the advisory between 1998 and 1999. For Little Bay de Noc, the fish consumption
advisory changed for a few species in 1999, becoming slightly more restrictive for consumption of
longnose sucker and smallmouth bass in the general population category. For Lake Michigan
north of Frankfurt, the consumption advisory became slightly more restrictive for women and
children consuming chinook salmon, slightly less restrictive for the general population consuming
lake trout, and much more restrictive for both categories consuming whitefish.
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Table 5-11
Michigan Fish Consumption Advisories for the Michigan Waters of Green Bay South of

Cedar River (applies to Menominee and Cedar rivers below first dam)

Species Size 1997 Population Children Population Children

1998 1999

General Women and General Women and

Brook trout <14" unlimited     

>14" !     

Brown trout <14" 1 per wk 1 per wk 1 per mn 1 per wk 1 per mna

14-18" 1 per wk 1 per wk 1 per 2 mn 1 per wk 1 per 2 mna

>18" ! ! ! ! !

Burbot <26"  unlimited 1 per wk unlimited 1 per wkb

>26"  unlimited 1 per mn unlimited 1 per mn

Carp All ! ! ! ! !c

Channel <12" !     
catfishc

>12" ! 1 per wk 1 per 2 mn 1 per wk 1 per 2 mn

Chinook All  unlimited 1 per mn unlimited 1 per mn
salmonb

Lake trout <22" unlimited unlimited 1 per mn unlimited 1 per mn

22-26" 1 per wk 1 per wk 1 per mn 1 per wk 1 per mna

>26" 1 per wk 1 per wk 1 per 2 mn 1 per wk 1 per 2 mna

Longnose All    1 per wk 1 per 2 mn
suckerd

Northern pike <26" unlimited unlimited 1 per mn unlimited 1 per mn

>26" ! unlimited 1 per mn unlimited 1 per mn

Rainbow trout <22" unlimited unlimited 1 per mn unlimited 1 per mn

>22" ! unlimited 1 per mn unlimited 1 per mn

Smallmouth <18"    unlimited 1 per mn
Bassd

>18"    1 per wk 1 per mn
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Table 5-11 (cont.)
Michigan Fish Consumption Advisories for the Michigan Waters of Green Bay South of

Cedar River (applies to Menominee and Cedar rivers below first dam)

Species Size 1997 Population Children Population Children

1998 1999

General Women and General Women and

Splake <14" 1 per wk 1 per wk 1 per mn 1 per wk 1 per mna

14-18" 1 per wk 1 per wk 1 per 2 mn 1 per wk 1 per 2 mna

>18" ! ! ! ! !

Sturgeon All ! ! ! ! !

Walleye <18" unlimited unlimited 1 per mn unlimited 1 per mn

18-26" ! 1 per wk 1 per 2 mn 1 per wk 1 per 2 mn

>26" ! ! ! ! !

White bass All ! ! ! ! !

Whitefish All  unlimited 1 per 2 mn unlimited 1 per 2 mnb

White perch All  ! ! ! !b

White sucker All  unlimited 1 per mn unlimited 1 per mnb

Yellow perch All  unlimited 1 per wk unlimited 1 per wkb

! = No consumption.
A blank cell means no advisory was issued.
1 per wk = One meal per week.
1 per mn = One meal per month.
1 per 2 mn = Six meals per year.
a. No consumption for nursing mothers, pregnant women, women who intend to have children, and children
under age 15.
b. Species added in 1998.
c. In 1997, carp and channel fish were grouped together in the advisory; this is why all size classes are
represented in 1997, but not in 1998 or 1999.
d. Species added in 1999.

Sources: Michigan Department of Natural Resources (1997) and Michigan Department of Community Health
(1998; 1999).
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Table 5-12
Michigan Fish Consumption Advisory for Little Bay de Noc

Species Size 1997 Population Children Population Children

1998 1999

General Women and General Women and

Burbot <26"  unlimited 1 per wk unlimited 1 per wka

>26"  unlimited 1 per mn unlimited 1 per mn

Longnose <14" unlimited unlimited 1 per mn 1 per wk 1 per mn
sucker 14-18" 1 per wk 1 per wk 1 per 2 mn 1 per wk 1 per 2 mnb

<18" 1 per wk 1 per wk ! 1 per wk !b

Northern <30"    unlimited 1 per mn
pikec

>30"    unlimited 1 per 2 mn

Smallmouth <18"  unlimited 1 per mn unlimited 1 per mn
bassa

>18"  unlimited 1 per mn 1 per wk 1 per mn

White sucker All    unlimited 1 per mnc

! = No consumption.
A blank cell means no advisory was issued.
1 per wk = One meal per week.
1 per mn = One meal per month.
1 per 2 mn = Six meals per year.
a. Species added in 1998.
b. No consumption for nursing mothers, pregnant women, women who intend to have children, and children
under age 15.
c. Species added in 1999.

Sources: Michigan Department of Natural Resources (1997) and Michigan Department of Community Health
(1998; 1999).

In 1997, the Environmental Protection Agency (EPA) issued a supplementary fish consumption
advisory for Michigan’s Great Lakes Waters (U.S. EPA, 1997). The EPA used an advisory
system more protective than the one used by Michigan. The EPA supplement listed advisories for
PCBs on the following species not included in the Michigan advisory: coho salmon, chinook
salmon, rainbow trout, yellow perch, and smelt. All of these species were added to Michigan’s
advisory in 1998. The supplement also included a more restrictive advisory for brown trout.
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Table 5-13
Michigan Fish Consumption Advisories for Lake Michigan North of Frankfurt (includes

Big Bay de Noc and parts of northern Green Bay)

Species Size 1997 Population Children Population Children

1998 1999
General Women and General Women and

Brown trout <22" unlimited unlimited 1 per mn unlimited 1 per mn
>22" ! ! ! ! !

Carp, catfish All ! ! ! ! !

Chinook <26"  unlimited 1 per mn unlimited 1 per mn
salmona >26"  unlimited 1 per mn unlimited 1 per 2 mn
Coho salmon <30  unlimited 1 per mn unlimited 1 per mna

>30"  unlimited 1 per 2 mn unlimited 1 per 2 mn
Lake trout <22" unlimited unlimited 1 per mn unlimited 1 per mn

22-26" 1 per wk 1 per wk 1 per mn unlimited 1 per mnb

>26" 1 per wk 1 per wk 1 per 2 mn 1 per wk 1 per 2 mnb

Rainbow <18"  unlimited 1 per wk unlimited 1 per wk
trouta >18"  unlimited 1 per mn unlimited 1 per mn
Smelt All  unlimited 1 per wk unlimited 1 per wka

Sturgeon All ! ! ! ! !

Walleye <18"  unlimited 1 per wk unlimited 1 per wk
18-22"  unlimited 1 per mn unlimited 1 per mn
22-26"  1 per wk 1 per mn 1 per wk 1 per mn
>26"  1 per wk 1 per 2 mn 1 per wk 1 per 2 mn

Whitefish <14"  unlimited 1 per wk 1 per wk !a

14-18"  unlimited 1 per wk ! !

18-26"  unlimited 1 per mn ! !

>26"  unlimited 1 per 2 mn ! !

Yellow perch All  unlimited 1 per wk unlimited 1 per wka

! = No consumption.
A blank cell means no advisory was issued.
1 per wk = One meal per week.
1 per mn = One meal per month.
1 per 2 mn = Six meals per year.
a. Species added in 1998.
b. no consumption for nursing mothers, pregnant women, women who intend to have children, and children
under age 15.

Sources: Michigan Department of Natural Resources (1997) and Michigan Department of Community Health
(1998; 1999).
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5.4 INJURY DETERMINATION

5.4.1 Injury Definitions

Injuries to fishery resources were assessed according to the definitions of injury in the
Department’s NRDA regulations. Specifically, this chapter assesses injury to fishery resources
resulting from PCB exposure according to the following injury definitions:

� the concentration of the released hazardous substance is sufficient to exceed action or
tolerance levels established under section 402 of the Food, Drug and Cosmetic Act, 21
U.S.C. 342, in edible portions of organisms [43 CFR § 11.62(f)(1)(ii)]

� the concentration of the released hazardous substance is sufficient to exceed levels for
which an appropriate State health agency has issued directives to limit or ban consumption
of such organism [43 CFR § 11.62(f)(1)(iii)].

Injuries according to the first definition were determined by comparing PCB concentrations
measured in fish fillets with the PCB tolerance level established by the FDA under section 402 of
the Food, Drug and Cosmetic Act, 21 U.S.C. 342. Injuries according to the second definition
were determined by evaluating the fish consumption advisories issued by Michigan and Wisconsin
in the Lower Fox River/Green Bay area, the state programs and procedures used to determine and
issue the advisories, and the role of PCBs in issuing the advisories.

5.4.2 Injury Determination and Spatial/Temporal Extent of Injuries

The information presented in this chapter demonstrates that fishery resources throughout the
Lower Fox River/Green Bay area are and have been injured as a result of exposure to PCBs.
Injuries result from (1) fish tissue PCB concentrations that exceed the FDA tolerance level, and
(2) fish tissue PCB concentrations that have triggered the establishment of fish consumption
advisories by the states of Wisconsin and Michigan.

Exceedences of the FDA tolerance level in edible fish tissue have been documented since 1971 in
Green Bay and since 1975 in the Lower Fox River. Exceedences most likely occurred prior to
these years, but no fish PCB concentration data are available for earlier years. Exceedences
continue to occur through 1995, the most recent year of data included in the injury assessment.
The spatial extent of the exceedences of the FDA tolerance level in edible fish tissue includes all
of the Lower Fox River from Little Lake Butte des Morts to the river mouth and Green Bay.
Exceedences have been documented in many fish species throughout the Lower Fox River/Green
Bay system.
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The fishery resources of the area are also injured by PCBs as a result of extensive fish
consumption advisories in place for many fish species. The species, spatial and temporal extent,
and degree of fish consumption advisory injuries for Lower Fox River/Green Bay fish are
summarized in Tables 5-14 through 5-16. These tables include the tributaries that are noted in the
advisories summarized in Tables 5-7 through 5-13. Figure 5-1 depicts the spatial extent of PCB
fish consumption advisory injuries, with different colors corresponding to the different areas
specified in the advisories. The tables and the figure demonstrate that as a result of PCB
contamination, fish consumption advisories have been issued for many fish species in the Lower
Fox River by Wisconsin and for many fish species in Green Bay, tributaries to Green Bay, and
northern Lake Michigan by Michigan and Wisconsin since 1976, and this continues through the
present (1999).

Table 5-14
Summary of Fish Species in the Lower Fox River for Which PCB Consumption

Advisories Have Been Issued by Wisconsin, 1976-1999

1976-1977 1978-1983 1984 -1986 1987-1994 1995-1996 1999a b
1997-

Black crappie  !    !

Bluegill  !    !

Bullhead  !  ! !  

Carp ! ! ! ! ! !

Channel catfish  !  ! ! !

Drum  !  ! !  

Northern pike  ! ! ! ! !

Rock bass  !    !

Sheepshead  !    !

Smallmouth bass  !    !

Walleye  ! ! ! ! !

White bass  ! ! ! ! !

White perch  !    !

White sucker  !  ! ! !

Yellow perch  !    !

! = Consumption advisory (either “no consumption” or “limit consumption”) issued.
A blank cell means no advisory was issued.
a. From 1978 to 1983, a “limit consumption” advisory was issued for all species in the Lower Fox River.
b. For 1984, the advisories are taken from the Health Guide (Wisconsin Department of Natural Resources,
1976-1994).

Adapted from Stratus Consulting Inc. (1998), with additional information from Wisconsin Division of Health
and Wisconsin Department of Natural Resources (1998; 1999).
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Table 5-15
Summary of Fish Species in Green Bay for Which PCB Consumption Advisories Have

Been Issued by Wisconsin or Michigan, 1976-1997

1976- 1978- 1984 - 1995-
1977 1983 1986 1987-1994 1996 1997 1998 1999

a

Brook trout See advisory for trout ! ! ! !   

Brown trout See advisory for trout ! ! ! ! ! !

Bullheads  !       

Burbot       ! !

Carp ! ! ! ! ! ! ! !

Catfish  ! !   ! ! !

Chinook salmon See advisory for ! ! ! ! ! !
salmon

Coho salmon See advisory for !      
salmon

Lake trout See advisory for trout !   ! ! !

Lake whitefish !  

Longnose sucker        !

Northern pike   ! ! ! ! ! !

Rainbow trout See advisory for trout ! ! ! ! ! !

Salmon ! ! See advisories for coho and chinook salmon

Smallmouth bass   !   ! ! !

Splake    ! ! ! ! !

Sturgeon    ! ! ! ! !

Trout ! ! See advisories for lake, brown, brook, and rainbow trout

Walleye   ! ! ! ! ! !

White bass   ! ! ! ! ! !

White perch      ! ! !

White sucker   ! !  ! ! !

Whitefish  !   ! ! !

Yellow perch      ! ! !

! = Consumption advisory (either “no consumption” or “limit consumption”) issued.
A blank cell means no advisory was issued.
a. For 1984, the Wisconsin advisories are taken from the Health Guide (Wisconsin Department of Natural
Resources, 1976-1994).
The table excludes advisories issued by Michigan for mercury only.

Adapted from Stratus Consulting Inc. (1998), with additional information from Wisconsin Division of Health
and Wisconsin Department of Natural Resources (1998; 1999) and Michigan Department of Natural
Resources (1998; 1999).
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Table 5-16
Summary of Fish Species in Lake Michigan (Wisconsin waters and Northern Lake

Michigan north of Frankfort, Michigan) for Which PCB Consumption Advisories Have
Been Issued by Wisconsin or Michigan, 1976-1997

1976-1977 1983 1984 -1986 1994 1995-1996 1997 1999
1978- 1987- 1998-

a

Brook trout See advisory for trout !     
Brown trout See advisory for trout ! ! ! ! !

Carp ! ! ! ! ! ! !

Catfish  ! ! ! ! ! !

Chinook salmon See advisory for salmon ! ! ! ! !

Chubs      ! !

Coho salmon See advisory for salmon ! ! ! ! !

Lake trout ! ! ! ! ! ! !

Lake whitefish !

Longnose suckers    ! ! ! !b

Northern pike   !     
Rainbow trout or
steelhead ! ! !   ! !

Salmon ! ! See advisories for chinook and coho salmon
Smallmouth bass   !     
Smelt      ! !

Sturgeon      ! !

Trout ! ! See advisories for lake, brown, brook, and rainbow trout
Walleye   !     
White bass   !     
White sucker   !     
Whitefish    ! !

Yellow perch      ! !

! = Consumption advisory (either “no consumption” or “limit consumption”) issued.
A blank cell means no advisory was issued.
a. For 1984, the advisories are taken from the Health Guide (Wisconsin Department of Natural Resources,
1976-1994).
b. Advisory for longnose suckers issued for Little Bay de Noc only.
The table excludes advisories issued by Michigan for mercury only.

Adapted from Stratus Consulting Inc. (1998), with additional information from Wisconsin Division of Health
and Wisconsin Department of Natural Resources (1998; 1999).
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Figure 5-1
Spatial Extent of PCB Fish Consumption Advisories in the Lower Fox River/Green Bay

Area. Different colors correspond to the different regions referred to in the advisories (see Tables
5-7 through 5-13 for region descriptions and advisory details). In general, advisories decrease in

level of restricted consumption from the Lower Fox River to outer portions of Green Bay. 



CHAPTER 6
ADVERSE HEALTH EFFECT INJURIES TO WALLEYE

6.1 INTRODUCTION

This chapter presents an evaluation of adverse health effect injuries to walleye in the Lower Fox
River and Green Bay. The chapter begins with a summary of Barron et al. (1999), which describes
the results of NRDA studies conducted by the Service that examined the association of PCBs with
a comprehensive suite of fish health parameters in Lower Fox River and Green Bay walleye.
Additional data on PCBs in walleye are also presented, and then integrated with the results of
Barron et al. (1999).

6.2 SUMMARY OF DATA REPORTED IN BARRON ET AL . (1999)

In a series of NRDA studies reported by Barron et al. (1999) [with supporting documentation in
Stratus Consulting (1999a)], the Service measured a number of biomarker and physiological
responses of adult walleye collected from the Lower Fox River and Green Bay and at two
reference sites (Lake Winnebago and Patten Lake) to evaluate the effects of PCBs on walleye
health. As discussed below, the most striking differences relating to fish health between
assessment and reference area fish were in PCB concentrations and liver tumors and pre-tumors.

Walleye collection locations are shown in Figure 6-1. Assessment area sampling locations from
which walleye were collected in 1996 and 1997 are the Lower Fox River, lower Green Bay,
western Green Bay, eastern Green Bay, and upper Green Bay (1996 only). These locations were
chosen to correspond to zones sampled in the Green Bay Mass Balance Study (Connolly et al.,
1992). In 1997, sampling was expanded to include nearby Patten Lake and Lake Winnebago
(which is upstream of the assessment area) as reference areas; these reference areas had lower
concentrations of PCBs than assessment area sampling locations, but had walleye of similar age as
in the assessment area. This sampling procedure was designed to enable comparison between
PCB-contaminated fish from Green Bay and uncontaminated fish from similar habitats.

Walleye collected in 1996 and 1997 were evaluated for liver lesions and for several biochemical,
physiological, histological, and fish health measurements, including ethoxyresorufin-O-deethylase
(EROD) activity, immunological evaluation of kidney and blood samples, measurement of plasma
vitellogenin, and examination of tissues for bacterial, viral, and parasitic infections. This suite of
tests was designed to evaluate important fish health parameters that can be adversely affected by
PCB exposure, as described in Chapter 4.
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Figure 6-1
1996-1997 Walleye Collection Locations
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Each parameter is described in greater detail below. Walleye samples from 1997 were not yet
analyzed for PCB concentrations at the time when the Barron et al. (1999) report was released.
The results of the PCB analyses of the 1997 walleye samples are presented in Section 6.3.

Tissue PCB Concentrations

The results of the 1996 PCB analyses in walleye tissue are displayed in Table 6-1. Mean
concentrations of PCBs in whole body samples were elevated at all assessment area sampling
locations, ranging from 4.6 )g/g (wet weight) in western Green Bay to 8.6 )g/g in eastern Green
Bay. Mean concentrations of PCBs in liver samples were similar to whole body concentrations,
ranging from 4.1 )g/g in western Green Bay to 7.9 )g/g in eastern Green Bay. PCB congener
patterns from walleye collected in 1996 were similar across all assessment area sampling sites,
with the coplanar PCBs, including PCB 126 and PCB 77, detected in fish from all assessment
areas. The congener pattern in Lower Fox River walleye showed a greater proportion of lower
chlorinated congeners than at other assessment area sampling locations. This trend of decreasing
proportion of lower chlorinated congeners from the river to the bay is consistent with the Lower
Fox River paper companies being the predominant source of PCBs to the river and the bay, with
PCBs weathering as they are transported to the bay (Stratus Consulting Inc., 1999d).

Liver Histopathological Lesions

Hepatic foci of cellular alteration (FCA) and hepatic tumors (HT) represent early and late stages,
respectively, of the progression of cancer in the liver. FCA are preneoplastic lesions that may
develop into tumors, and their presence indicates the initiation of tumor formation. HT can
include both malignant or benign tumors.

As reported in Barron et al. (1999), 5-8 year old fish were used to compare lesions between
assessment area and reference area walleye because this range of ages overlapped between fish
collected at assessment area sampling locations and reference areas. The results of this
comparison are summarized here. Table 6-2 shows prevalence of lesions and mean number of
lesions per liver sample, by area and by sex. There was a statistically significant (p = 0.004 for
both sexes combined; p = 0.003 for female fish only) elevation of FCA and HT prevalence in
assessment area fish over reference area fish. Twenty-six percent of all assessment area fish had at
least one FCA or HT, compared to 5.9% of reference area fish. Thirty-four percent of assessment
area females had at least one FCA or HT, compared to 6.9% of reference area females.

Immunological Responses

Immunological assessment of walleye collected in 1997 was conducted to identify the potential
for immune function impairment in assessment area fish relative to reference area fish. The
assessment involved measurement of several blood indices, including hematocrit (red blood
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Table 6-1
Mean and Standard Deviation (SD) of

Total PCB Concentrations in Walleye Collected in 1996

Sample Location Tissue n ))g/g ww µg/g Lipid
Total PCBs

Lower Fox River whole 7 6.0 47.5a

(2.2) (13.7)

liver 1 4.9 32.3b

Lower Green Bay whole 6 5.7 34.0a

(2.9) (15.0)

liver 4 4.9 37.4
(2.2) (7.1)

Eastern Green Bay whole 11 8.6 52.9a

(3.6) (21.8)

liver 4 7.9 57.4
(2.5) (17.0)

Western Green Bay whole 4 4.6 30.8a

(0.6) (6.6)

liver 4 4.1 28.2
(2.5) (6.8)

Upper Green Bay whole 3 5.8 33.3a

(1.3) (6.6)

liver 4 4.4 32.4
(1.4) (9.5)

a. Size weighted whole body composites of three to six fish; n is the number of separate sample analyses.
b. Composite of whole livers from four fish; n is the number of separate sample analyses.

Source: Barron et al., 1999.

cell volume), leukocrit (white blood cell volume), and blood differential counts (percentage of
white blood cell types). Red blood cells are responsible for transporting oxygen through the body,
and white blood cells function as defense against disease. In addition, kidney cells from walleye
were used to measure T-cell lymphoproliferation (the production of a type of white blood cell that
helps to identify and destroy cells in the body that have become infected by a foreign agent),
superoxide anion production, and phagocytosis (the ability of the fish’s immune system to attack
and consume invading particles).
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Table 6-2
Foci of Cellular Alteration and Hepatic Tumors in Male and Female Walleye

(5 to 8 years old; 1996 and 1997 data combined)

Location Sex Weight (kg) n HT FCA HT or HT FCA HT
Average FCA and/or No FCA

a

Prevalence: Number of Fish with Lesions (%) Sample
Mean Lesions per Liver

b

Assessment Male 1.29 23 3 (13%) 3 (13%) 0 (0%) 20 (87%) 2  — 
Area

e

Female 1.62 41 14 (34%) 11 (27%) 7 (17%) 27 (66%) > 4.6 2c c c

Combined 1.48 66 17 (26%) 14 (21%) 7 (11%) 49 (74%) > 4.1 2d c c c

Reference Male 0.81 5 0 (0%) 0 (0%) 0 (0%) 5 (100%)  —  — 
Area

e e

Female 0.86 29 2 (6.9%) 2 (6.9%) 0 (0%) 27 (93%) 1  — e

Combined 0.85 34 2 (5.9%) 2 (5.9%) 0 (0%) 32 (94%) 1  — e

a. Computed using available data (weights not recorded on all fish).
b. Only includes fish with an FCA or HT.
c. Significantly different prevalence compared to reference area fish (p < 0.05; t-test).
d. Includes fish of undetermined sex.
e. Not applicable (no FCA or HT).

Source: Barron et al. (1999).
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No remarkable effects on immunological parameters were found in contaminated walleye,
although several statistically significant trends were evident (Barron et al., 1999). In comparing
assessment area fish to reference area fish, significant elevations were observed in assessment area
hematocrit (red blood cell volume) and in lymphoproliferation of kidney T-cells (p = 0.007 and p
= 0.002, respectively) (Barron et al., 1999).

A significant (p = 0.04) reduction was found in number of monocytes (another type of white
blood cell that ingests invading particles in the body’s tissues). Barron et al. (1999) speculated
that this reduction in cells responsible for defense against infectious agents could, by weakening
the immune system, contribute to the greater incidence of gill parasites detected in assessment
area fish (described below). However, alternative causes (e.g., differences in parasite densities in
the waterbodies) are also plausible.

Health Screening

Walleye collected in 1997 were assessed for the incidence and severity of viral, bacterial, and
parasitic infections (Barron et al., 1999). No viruses were detected in any samples. A large
number of isolates of an unidentified yeast and one identified mold were recovered from
assessment area walleye. Assessment area fish also had a high prevalence of the gill parasite
E. luciopercarum. However, intestinal parasites and bacterial infections were similar in fish
collected from assessment area sampling locations and reference areas, and no fish had overt signs
of disease.

Hepatic EROD Activity

EROD is an enzyme that is involved in detoxifying pollutants in the body; EROD activity typically
is induced when PCBs enter the body. Although fish exposed to PCBs generally exhibit EROD
induction, Barron et al. (1999) reported that EROD activity was similar between walleye from
assessment area sampling locations and walleye from reference areas, even though PCB
concentrations were higher in assessment area fish. As discussed in Barron et al. (1999),
laboratory studies have not been conducted to determine the susceptibility of walleye to EROD
induction, so it is not known whether walleye normally exhibit EROD induction in response to
PCBs. It is also possible that PCBs inhibit EROD activity, that EROD activity is altered during
fish capture procedures, or that fish chronically exposed to elevated contaminant levels have a
reduced responsiveness toward EROD induction (Barron et al., 1999).

Plasma Vitellogenin

Plasma vitellogenin is a protein produced by females that is used in the formation of eggs.
Normally, males do not produce vitellogenin. Plasma vitellogenin levels have been used as an
indicator of PCB effects on the endocrine systems of fish (Folmar et al., 1996; 
Harries et al., 1996). PCBs are potentially endocrine disrupting chemicals and may have
estrogenic or anti-estrogenic effects. Plasma vitellogenin was not detected in male fish but was
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elevated in all female walleye from eastern Green Bay. Although it is noted in Barron et al. (1999)
that this increase in plasma vitellogenin could be the result of a weak estrogenic response to
PCBs, it was also noted that any role of PCBs in controlling plasma vitellogenin in male or female
walleye has not yet been elucidated.

Walleye Health Assessment Conclusions

A significant increase in the prevalence of liver tumors and pre-tumors was observed in
assessment area walleye, with the prevalence being greater in female fish. Assessment area fish
also had significantly higher PCB concentrations. Other fish health responses measured (immune
system effects, biochemical changes, disease, endocrine system effects) were not notably different
in the assessment area.

6.3 SUPPLEMENTAL L IVER PCB ANALYSIS

The walleye livers collected in 1997 reported on by Barron et al. (1999) for fish health indices
were analyzed for PCBs subsequent to the release of that report. The samples were analyzed for
PCB concentration (as Aroclors) and lipid content. The analytical data were validated by a third
party validator and then supplied to the Service (B. Olsiewski, EcoChem, Inc., pers. comm.,
1999). Table 6-3 shows liver PCB concentrations for 1997 walleye by location. Mean total PCB
concentration in assessment area fish was significantly elevated over reference area fish
(p < 0.001; t-test), with mean total PCB concentration of 4.35 )g/g across all assessment area fish
compared to 0.460 )g/g across all reference area fish. Liver PCB concentrations for individual
walleye from 1997 are provided in Appendix A.

6.4 INTEGRATION OF BARRON ET AL . (1999) DATA AND SUPPLEMENTAL

PCB ANALYSIS

This section combines the findings presented in Barron et al. (1999) with the supplemental PCB
concentration data presented in Section 6.3. Mean total PCB concentrations for all 1996 and 1997
walleye liver samples combined were elevated at assessment area sampling locations compared to
reference area locations (Table 6-4) (p < 0.001; t-test). Mean total PCB concentration across all
assessment area sampling locations was 4.56 )g/g (sd = 2.62), compared to 0.460 )g/g (sd =
0.60) in reference areas. The range of total PCB concentration in the assessment area was 0.857-
12.9 )g/g, compared to 0.0-2.22 )g/g in reference areas.

As discussed in Barron et al. (1999), PCBs, even at low concentrations, are known to induce
cellular changes, and dietary exposure to PCBs has been documented to increase hepatic tumors
in several fish species. Barron et al. (1999) notes that environmental exposure to PCBs has been
associated with increased tumor frequencies and other histological lesions in fish, and the lesions
observed in walleye are consistent with exposure to carcinogens or tumor promoters. However,
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Table 6-3
Mean and Standard Deviation (SD) of Total PCB Concentrations in Walleye Livers

Collected in Assessment and Reference Areas in 1997

Sample Location n as ))g/g wet weight (SD)
Mean Total PCBs

Lower Fox River 19 6.42 (1.67)

Lower Green Bay 12 4.07 (3.81)

Eastern Green Bay 17 2.58 (1.36)

Western Green Bay 14 3.92 (1.97)

Upper Green Bay NS NSa a

All assessment area sampling locations 62 4.35 (2.51)

Lake Winnebago 12 0.938 (0.548)

Patten Lake 13 0.0186 (0.0670)

All reference area sampling locations 25 0.460 (0.599)

a. Not sampled.

Source: B. Olsiewski, Ecochem, Inc., pers. comm., 1999.

Table 6-4
Mean and Standard Deviation (SD) of Total PCB Concentrations in Walleye Livers

Collected in Assessment and Reference Areas in 1996 and 1997 Combined

Sample Location n as ))g/g wet weight (SD)
Mean Total PCBs

Lower Fox River 20 6.35 (1.70)

Lower Green Bay 16 4.29 (3.43)

Eastern Green Bay 21 3.60 (2.65)

Western Green Bay 18 3.96 (2.03)

Upper Green Bay 4 4.40 (1.38)

All assessment area sampling locations 79 4.56 (2.62)

Lake Winnebago 12 0.938 (0.548)

Patten Lake 13 0.0186 (0.067)

All reference area sampling locations 25 0.460 (0.599)
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Figure 6-2
Individual Fish Liver PCB Concentrations in Fish with and without FCA or HT 

as shown in Figure 6-2, PCB concentration was not correlated with incidence of FCA and/or HT
at the level of the individual fish (p = 0.90; t-test). This may be because the incidence of FCA and
HT is too low in the population to be correlated to PCBs given the sample size, because of non-
linearity in dose-response, or because of the confounding influence of unmeasured tumor
promoters. Nonetheless, comparison on an area-by-area basis shows that the increased incidence
of pre-tumors and tumors in assessment area walleye is associated with elevated exposure of these
walleye to PCBs.
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6.5 INJURY DETERMINATION

6.5.1 Injury Definition and Measurements

Injuries to walleye were assessed according to the definitions of injury in the Department’s NRDA
regulations at 43 CFR Part 11. Specifically, injuries were assessed according to the following
injury definition:

the concentration of the released hazardous substance is sufficient to cause the biological
resource or its offspring to have undergone at least one of the following adverse changes
in viability: death, disease, behavioral abnormalities, cancer, genetic mutations,
physiological malfunctions (including malfunctions in reproduction), or physical
deformations [43 CFR § 11.62(f)(1)(i)].

Measurements of the following biological responses were used to determine adverse viability
injuries to walleye:

� to evaluate cancer injuries: fish neoplasia in livers

� to evaluate disease injuries: viral, bacterial, and pathogenic infections; immune system
status (as indicated by various blood and kidney parameters)

� to evaluate physiological malfunctions: endocrine system impairment (as indicated by
plasma vitellogenin); biochemical changes (as indicated by liver EROD activity); immune
system status (as indicated by various blood and kidney parameters)

� to evaluate physical deformation: histopathological lesions.

As described in Chapter 4, these injury measures meet the criteria in the Department’s regulations
for biological responses used to determine injuries at 43 CFR § 11.62 (f)(2). The injury
determination included an evaluation of whether the biological responses were statistically
significantly different between walleye from the Lower Fox River/Green Bay area and walleye
from reference areas (Lake Winnebago and Patten Lake), consistent with the Department’s
regulations [43 CFR §11.62(f)(3)].

6.5.2 Injury Determination

Table 6-5 summarizes the results of the injury determination for walleye. Of the injury endpoints
and measurements assessed, only the incidence of walleye liver tumors and pre-tumors was
statistically significantly higher in assessment area walleye compared to reference areas (Lake
Winnebago and Patten Lake). Of the assessment area fish aged 5-8 years, 26% had liver tumors
or pre-tumors compared with 6% of reference area fish. The difference was more dramatic in
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Table 6-5
Summary of Injury Determination Results for Walleye

Injury Category Response Meets Significant Difference
[43 CFR Department’s between Assessment

§11.62(f)(4)] Biological Response Measured Criteria? and Reference Areas?

Statistically

Cancer Fish neoplasia (liver tumors and pre- Yes Yes
tumors in adult fish) [43 CFR §

11.62(f)(4)(iv)(E)]

Disease Incidence and severity of viral, Yes No
bacterial, and parasitic infections  (see Section 4.2.2)

Physiological Immune system impairment (various Yes No
malfunction blood and kidney indices of immune  (see Section 4.2.2)

system functioning)

a

Endocrine system impairment Yes No
(plasma vitellogenin) (see Section 4.2.2)

Biochemical changes (liver EROD Yes No
activity) (see Section 4.2.2)

Physical Histopathological lesions (not Yes No
deformation including liver tumors and pre- [43 CFR §

tumors) 11.62(f)(4)(vi)(D)].

a. Although several individual blood parameters were significantly different, it was concluded that these
differences did not indicate overall immune system impairment.

females, with 34% of assessment area fish having liver tumors or pre-tumors versus 7% of
reference area fish. Assessment area fish also had statistically significantly higher concentrations
of PCBs in the liver. The other injury endpoints and measurements do not show consistent
differences between the assessment area and reference area. Therefore, it is concluded that
walleye have not suffered disease or physiological malfunction injuries.

Although the causal link between PCB exposure and liver tumor formation in assessment area
walleye is not conclusively established by these data, it is well documented that PCBs promote or
enhance liver tumor formation (Hendricks et al., 1990). For example, rainbow trout that were
exposed to PCBs showed a significantly higher incidence of liver tumors induced by aflatoxin B1

(a tumor initiator) than trout exposed to aflatoxin B  alone (Hendricks et al., 1981). The liver is1

generally the predominant site for fish tumors or pre-tumors that are initiated or promoted by
contaminants (Baumann, 1992a; Baumann, 1992b). Higher incidences of liver tumors in fish
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exposed to contaminants, including PCBs, have been demonstrated in both field and laboratory
studies (Teh et al., 1997a).

A statistically significant difference in fish neoplasia between the assessment and reference areas is
specified in the Department’s regulations as constituting injury to fish:

Injury has occurred when a statistically significant difference can be measured in the
frequency of occurrence of the fish neoplasia when comparing population samples from
the assessment area and a control area [43 CFR §11.62(4)(iv)(A)].

Therefore, the higher incidence of liver tumors and pre-tumors in assessment area walleye
constitutes an injury according to the Department’s regulations at 43 CFR Part 11.



CHAPTER 7
REPRODUCTIVE INJURIES TO LAKE TROUT

7.1 INTRODUCTION

This chapter presents an evaluation of injuries to lake trout (Salvelinus namaycush) in Green Bay
and northern Lake Michigan resulting from PCB exposure. Lake trout are the native top predator
in the aquatic ecosystem of Lake Michigan, and have provided valuable ecological, cultural,
recreational fishing, and commercial fishing services. Lake trout populations were decimated in
the 1940s following the invasion of the sea lamprey into the Great Lakes. Despite subsequent
control of sea lamprey populations, extensive stocking efforts and limits on fishing have failed to
result in a naturally reproducing lake trout population in Lake Michigan or Green Bay.

Environmental contaminants, including PCBs, have been implicated in the failure of lake trout to
reproduce naturally in Lake Michigan (Willford et al., 1981). Lake trout are sensitive to PCB
toxicity, and studies have linked lake trout reproductive failure in Lake Michigan with PCB
exposure (Mac et al., 1993). Therefore, the Service conducted this injury assessment on lake
trout.

This chapter is organized as follows:

� Section 7.2 describes the lake trout resource of Green Bay and Lake Michigan, including
historical population trends and efforts to re-establish naturally reproducing populations.

� Section 7.3 describes PCB toxicity to early life stages of lake trout, the life stages that
have been found to be most sensitive to PCB toxicity.

� Section 7.4 summarizes historical studies of the possible link between PCBs and
reproductive failure of lake trout in Lake Michigan.

� Section 7.5 describes the methods and results of studies conducted by the United States
Geological Survey (USGS) in 1996-1998 on reproductive failure of Lake Michigan lake
trout.

� Section 7.6 describes the methods and results of supplemental NRDA and USGS studies
in 1996-1998 on the possible interaction of PCB toxicity with thiamine deficiency in lake
trout.
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� Section 7.7 models PCB concentrations in Lake Michigan lake trout eggs in the past, and
compares the model concentrations to injury thresholds.

� Section 7.8 summarizes the available information and presents the determination of injury
to lake trout.

As described in Section 7.8, based on the information and analyses presented in this chapter, the
Trustees conclude that there is indication that PCBs caused lake trout reproductive failure in the
1970s. However, given that evidence suggests little to no reproductive effects of PCBs since 1980
and that other factors appear to be substantially more important to the survival of lake trout fry,
the Trustees determine that current data do not support the conclusion that lake trout in Green
Bay and Lake Michigan are injured by the PCBs released from Fox River paper companies.

7.2 DESCRIPTION OF THE LAKE TROUT RESOURCE

Lake trout in Green Bay and Lake Michigan represent a nationally significant resource. The
national significance of lake trout in the Great Lakes, the largest area of contiguous fresh waters
in the world, results from its prominence as the keystone native predator in all five Great Lakes.
Because of its prominence in the endemic Great Lakes fish communities, lake trout are considered
to be a surrogate of ecosystem health for the basin (Edwards et al., 1990). The significance of the
lake trout resource is reflected in the extensive state, federal, and international efforts over the
years to maintain and restore the lake trout, as described below.

Lake trout are a large, long-lived species, with life spans of up to 20 years (Burnham-Curtis and
Bronte, 1996; Schram and Fabrizio, 1998). Lake trout prefer cool water, about 10(C, and
therefore spend most of their lives in the deeper waters of lakes (Scott and Grossman, 1973;
Becker, 1983). Lake trout prey primarily on aquatic invertebrates and forage fish, with diets
varying by seasonal abundance of dietary items (Becker, 1983). Three distinct forms or strains of
lake trout were present in Lake Michigan in the early 1900s and probably persisted until the
extirpation of the native lake trout in the mid-1950s (Brown et al., 1981). One of the forms,
described as the “salmon” or “bay trout,” was unique to Green Bay. Bay trout were small, lean,
and very red-fleshed and spawned later than other forms.

An understanding of the early life stages of lake trout is important in an evaluation of the effects
of PCB toxicity on lake trout reproduction. Lake trout spawn during the fall from mid-October to
early December, when females deposit their eggs on rocky substrate on the lake bottom (Martin
and Oliver, 1980; Marsden, 1995). During egg formation in the female, large amounts of yolk
protein and lipids are produced in the liver and translocated to the developing eggs (Tyler et al.,
1990). It is during this stage when contaminants in the maternal fish, including PCBs, can be
transferred to and deposited in the developing eggs (Walker et al., 1994). Newly hatched
salmonid larva are termed “sac fry,” in reference to the yolk sac that serves as the primary source
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Figure 7-1
Historical Lake Trout Yield/Area for Each of the Great Lakes

of nutrition to the developing larvae (Heming and Buddington, 1988). Approximately one month
after hatching, the yolk sac is completely absorbed and the larva begins exogenous feeding
(Becker, 1983). This stage is termed the “swim-up” stage. The egg, sac fry, and swim-up
development stages have been the focus of much of the work on PCB toxicity to lake trout, as
they are more sensitive to PCB toxic effects than adults (U.S. EPA, 1993a).

Historically, Lake Michigan consistently produced more native lake trout per surface area and
sustained higher annual catches than any of the other Great Lakes (Figure 7-1). The lake trout
was an important sustenance species for native Americans (Kinietz, 1940) and was the most
valuable commercial fish species in the lake from 1890 until the mid-1940s (Wells and Mclain,
1972). During the early 1900s, commercial harvest in the Wisconsin waters of Lake Michigan was
50% of the lakewide harvest (Baldwin et al., 1979).

The Lake Michigan and Green Bay lake trout fishery abruptly collapsed in the late 1940s
following the invasion of the sea lamprey (Figure 7-1). The last wild lake trout caught in Lake
Michigan were recorded from assessment nets fished near the Sheboygan Reef in 1957
(Eschmeyer, 1957).

Several joint national and international initiatives have been enacted to restore Lake Michigan lake
trout populations. The primary focus of fishery management efforts has been to increase their
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Figure 7-2
Annual Lake Trout Stocking in Green Bay and Wisconsin Waters of Lake Michigan near

Green Bay

abundance through stocking to a level where natural reproduction can be successful. Lake trout
stocking from the Service’s national fish hatcheries began in 1965, following successful chemical
treatments to control lamprey numbers in Lake Michigan (Smith and Tibbles, 1980; Holey et al.,
1995). Figure 7-2 shows the number of lake trout stocked in Green Bay and the Wisconsin waters
of Lake Michigan near Green Bay. The peak year of stocking in these areas was 1967, when close
to 1 million lake trout were stocked. Lake trout were stocked in Green Bay from 1965 to 1982,
but Green Bay stocking was ceased because of poor success. Since lake trout stocking in Green
Bay ceased, the only lake trout recruitment to the bay is from movement of lake trout from
northern Lake Michigan. Figure 7-2 shows that during the last decade, approximately 200,000
lake trout have been stocked annually in the Wisconsin waters of Lake Michigan.

In 1985, a lakewide plan for lake trout restoration in Lake Michigan was implemented by fishery
agencies (LMLTTC, 1985; Holey et al., 1995). Major features of the 1985 plan were to focus
trout stocking efforts in habitat that historically was the most productive, establish total mortality
goals and provide greater protection from exploitation through creation of refuges and regulations
to further limit harvest, increase the genetic diversity of the trout stocked by developing new
strains of hatchery broodstock, and continue efforts to monitor the impacts of contaminants and
sea lamprey mortality on trout survival (Holey et al., 1995).
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Despite a density of spawning lake trout in some areas of Lake Michigan that is considered
adequate for successful reproduction (Holey et al., 1995; Selgeby et al., 1995), the lake trout
population remains unable to sustain itself because of low natural reproduction. A number of
causes for this low reproduction have been cited, including over-exploitation, insufficient numbers
of lake trout stocked, poor egg survival due to contaminants, lack of genetic diversity in the
strains of lake trout stocked, inadequate homing ability in hatchery lake trout, stocking of fish in
poor habitat, and continued mortality due to sea lamprey predation (LMLTTC, 1985; Holey et al.,
1995). Other possible factors include predation on lake trout fry by alewife (Jones et al., 1995;
Krueger et al., 1995b) and early mortality syndrome (EMS), also known as swim-up syndrome,
thought to be caused by thiamine deficiencies in lake trout eggs (McDonald et al., 1998).

Given these possible causal factors, the Service recognizes that contaminants alone, including
PCBs, are not solely responsible for the failure of Green Bay and Lake Michigan lake trout to
reproduce naturally. However, given the sensitivity of lake trout to PCB toxicity, as part of the
NRDA the Service evaluated the potential for PCBs to be a contributing factor in the
reproductive failure of Green Bay and Lake Michigan lake trout.

7.3 PCB TOXICITY TO LAKE TROUT

This section provides an overview of PCB toxicity to lake trout, focusing on early life stage
toxicity that occurs to developing embryos and fry, since this life stage is the most sensitive to
PCB toxicity (Peterson et al., 1993; Cook et al., 1993; Walker and Peterson, 1994a; U.S. EPA,
1995; ASTDR 1996; Eisler and Belisle, 1996). Many of the toxic effects of PCBs on developing
lake trout are produced by specific coplanar PCB congeners that have a structure similar to that
of 2,3,7,8-tetrachloro-p-dibenzodioxin (TCDD) and cause toxicity through a similar mechanism,
as discussed below. Selected polychlorinated dibenzofuran (PCDF) and polychlorinated
dibenzodioxin (PCDD) congeners also cause the same toxic effects through the same mechanism.
Much of the laboratory and field work on the toxicity of these compounds has been conducted
using TCDD as the model compound, since TCDD is the most potent of these compounds in
causing the effects. Therefore, much of our discussion of the toxicity of the coplanar PCBs is
based on work conducted with TCDD.

This section presents a summary of the toxic effects caused by coplanar PCBs to developing lake
trout, a description of the TCDD toxicity equivalence approach to expressing PCB doses in terms
of equivalent TCDD doses, and a discussion of TCDD injury thresholds.

7.3.1 Description of Early Life Stage Toxicity of Coplanar PCBs and TCDD

The toxic effects of coplanar PCBs, PCDFs, and PCDDs are considered to occur by the same
mechanism, referred to as aryl hydrocarbon receptor (AhR)-mediated toxicity (Safe, 1990, 1994;



REPRODUCTIVE INJURIES TO LAKE TROUT � 7-6

Whitlock, 1990, 1993). The AhR is a cellular protein that binds to TCDD and the TCDD-like
PCBs, PCDDs, and PCDFs. The binding of the TCDD-like compounds with AhR initiates a series
of events within the cell that eventually lead to the range of biological responses produced by the
compounds (Sutter et al., 1991; Whitlock, 1993).

The cardiovascular system is a key site of action for TCDD-like chemicals (Spitsbergen et al.,
1991; Mizell et al., 1996; Guiney et al., 1997; Henry et al., 1997; Cantrell et al., 1996, 1997).
Toxicity in TCDD-exposed lake trout sac fry results from cessation of blood flow. This reduction
in blood flow has been observed in the caudal vein and vascular beds of the head, trunk, and gills
(Hornung and Peterson, unpublished results; Henry et al., 1997). Subsequent to the reduction in
blood flow there is an increase in yolk sac and pericardial edema, development of craniofacial
deformities, and failure of the swim bladder to inflate (Harris et al., 1994; Henry et al., 1997).
Death usually follows the development of these signs of TCDD toxicity (Spitsbergen et al., 1991).
Other signs of TCDD toxicity in developing trout embryos include necrotic lesions in the retina,
brain, liver, and spinal cord; lethargy and arrested soft tissue and skeletal development in half-
hatched embryos and sac fry; decreased access to yolk sac nutrients, which contributes to reduced
growth of the sac fry and to mortality; and hemorrhage (Spitsbergen et al., 1991).

Lake trout embryos exposed to TCDD or coplanar PCBs as fertilized eggs show stage-specific
periods of toxicity (Spitsbergen et al., 1991). The most sensitive stage is the sac fry stage, and
contaminant effects appear generally from the middle to the end of the sac fry stage. Toxicity
beyond the sac fry stage is typically very low at exposure concentrations that cause toxicity to sac
fry (U.S. EPA, 1993a). Toxicity also can occur earlier, at the time of egg hatching, although at
greater concentrations than cause toxicity to sac fry (Walker et al., 1991). The affected lake trout
embryos are typically incompletely hatched, have significant yolk sac edema, and have high
mortality rates. Thus, the critical period for early life stage mortality in lake trout is from about
one week prior to hatching until the end of the sac fry stage.

The time course and symptoms of TCDD-like toxicity in lake trout sac fry are similar to blue-sac
disease in hatchery-reared salmonids (Spitsbergen et al., 1991). The blue-sac disease that occurs
in hatcheries is thought to be triggered by physical or chemical stressors such as elevated
ammonia, temperature shock, or hypoxia (Wolf, 1969 as cited in Spitsbergen, 1991; Burkhalter
and Kaya, 1977; Lasee, 1995). Since the TCDD-like PCBs, PCDDs, and PCDFs cause a
symptomology essentially identical to that of blue-sac disease, the toxicity caused by PCBs,
PCDDs, and PCDFs in lake trout and other fish species has been termed “blue-sac syndrome”
(Walker and Peterson, 1994a).

Blue-sac syndrome is distinct from “swim-up syndrome” (also referred to as “early mortality
syndrome,” or EMS), a type of early life stage mortality observed in Great Lakes lake trout that
does not appear to be associated with TCDD-like toxicity (Fitzsimons, 1995a; Marcquenski and
Brown, 1997). Swim-up syndrome occurs later than blue-sac syndrome, typically just before the
fry begin feeding, and has a distinct set of symptoms, including lethargy, loss of equilibrium,
anorexia, hyper-excitability, and finally death (Fitzsimons et al., 1995; Marcquenski and Brown,
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1997). The distinction between blue-sac syndrome and swim-up syndrome is important in
evaluating the evidence for and against the current and recent lake trout reproductive failure of
Lake Michigan lake trout being caused by PCBs, and is discussed in subsequent sections of this
chapter.

There are wide differences in susceptibility of freshwater fish species to the early life stage
mortality caused by TCDD and TCDD-like compounds. Lake trout is the most sensitive fish
species tested to date. Other salmonids (e.g., brook and rainbow trout) are also more sensitive
than other, nonsalmonid species; brook trout and rainbow trout are about 3-6 times less sensitive
than lake trout, whereas the other species are 8-38 times less sensitive (Helder, 1981;
Walker et al., 1991; Walker and Peterson, 1994b; Henry et al., 1997; Elonen et al., 1998).

The reason for the greater sensitivity of lake trout to TCDD and TCDD-like PCBs, PCDDs, and
PCDFs is not known. Elonen et al. (1998) suggested that the ability of nonsalmonid fish species to
tolerate higher egg concentrations of TCDD might be related to their shorter development time.
The time from hatch to first feeding ranged from 1 to 18 days for the nonsalmonid species they
tested compared to 30-70 days for trout, with lake trout having the longest development time.
Comparison of post swim-up TCDD elimination rates between the nonsalmonid species and lake
trout suggests that lake trout with a long development time may retain TCDD longer than species
with short development times. However, species differences in cellular responses to TCDD may
also be involved (Henry et al., 1997).

Using sexually mature female lake trout, Walker et al. (1994) demonstrated that there was not a
significant difference in the potency of TCDD in causing lake trout sac fry mortality when
exposure of eggs to TCDD occurred via maternal transfer, waterborne exposure, or egg injection.
Similarly, the concentration of TCDD in brook trout eggs that resulted in dose-related increases in
sac fry mortality was similar following waterborne exposure and maternal transfer (Walker and
Peterson, 1994b). Therefore, these studies indicate that it is the egg dose of TCDD that
determines toxicity, not the route of exposure.

When Lake Ontario lake trout eggs were exposed to graded doses of TCDD, blue sac syndrome
associated mortality was observed at the same doses as for lake trout eggs from Lake Superior or
a hatchery, which were much less contaminated than the Lake Ontario eggs (Guiney et al., 1996).
The similar TCDD dose related responsiveness of the Lake Ontario lake trout sac fry to TCDD
exposure indicated that chronic sub lethal exposure of lake trout to TCDD-like compounds does
not provide resistance to toxicity from subsequent exposure to TCDD, as was reported for
Fundulus heteroclitus collected from a TCDD contaminated bay (Prince and Cooper, 1995).

7.3.2 The TCDD Toxicity Equivalence Approach to Expressing Toxic Doses

The TCDD toxicity equivalence approach has been developed as a way of expressing the dose of
TCDD-like PCB, PCDD, and PCDF congeners in terms of an equivalent concentration of TCDD.
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1. The term TEF has been used to refer to consensus estimates of the potency of an individual PCB, PCDD, or
PCDF congener relative to TCDD, as determined by a panel of international experts chosen by the World Health
Organization (Van den Berg, 1998). The term relative potency (REP) refers to the potency of an individual PCB,
PCDD, or PCDF congener relative to TCDD for a specific toxic endpoint in a single study (Van den Berg,
1998). Throughout this report we use the term TEF to refer to both REPs and TEFs to avoid confusion with the
historical literature and to reflect the fact that fish TEFs are based largely on REPs for trout early life stage
mortality (Van den Berg, 1998).

Since TCDD and coplanar PCB toxicity occurs through a similar mechanism, a PCB dose can be
converted to a TCDD dose that would cause the same level of effects. This approach standardizes
the expression of the dose based on the relative toxic “potency” of different chemicals, and allows
for comparison of PCB exposure concentrations with the extensive literature on TCDD toxicity to
salmonids.

The toxic potencies of the AhR-active PCB, PCDF, and PCDD congeners vary by several orders
of magnitude. The PCB congeners that are most potent have chlorine substitutions in the meta-
and para- positions that allow them to maintain a planar conformation. These non-ortho-
substituted, coplanar PCB congeners include PCB 77, 81, 126 and 169. Mono-ortho-substituted
PCB congeners are essentially inactive in causing early life stage mortality in rainbow trout
(Walker and Peterson, 1991; Zabel et al., 1995a), although such congeners do show AhR-
mediated toxicity in mammals and birds (Van den Berg et al., 1998).

In the toxicity equivalence approach, the toxic potency of each congener is expressed relative to
the potency of TCDD, which is recognized as the most potent AhR agonist in vertebrates (Safe,
1994). The relative potency of a congener is termed its toxic equivalency factor, or TEF.  TEFs1

are derived as the ratio of the TCDD concentration causing a specific effect (e.g., mortality to
50% of exposed embryos) to the congener concentration causing the same effect. Zabel et al.
(1995a) tested 15 PCB congeners and found that only the coplanar PCBs 77, 81, 126, and 169
caused early life stage mortality to trout and hence have TEFs > 0. While the early life stage
toxicity to trout of the remaining 194 PCB congeners has yet to be tested, knowledge of the
structure activity relationship for such toxicity between the non-ortho-, mono-ortho, and di-ortho-
substituted PCB congeners already tested suggests that the coplanar PCB congeners (e.g., PCB
77, 81, 126, and 169) will be the most significant contributors to TCDD-like developmental
toxicity (Zabel et al., 1995a; Walker et al., 1996; Cook et al., 1997).

TEFs are used to convert congener concentrations measured in an environmental sample to
equivalent TCDD concentrations by multiplying the measured congener concentration by its
respective TEF. For a mixture of PCBs or other TCDD-like compounds, the TCDD equivalents
of each congener are summed to calculate a TCDD concentration that has equivalent toxic
potency to the mixture of PCBs present. In this way, mixtures of PCBs and other AhR-active
compounds can be expressed in terms of TCDD toxic equivalents, or TEQ. Specifically,
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where:
TEQ = total TEQ from all AhR-active compounds
C = concentration of AhR-active compound i in the samplei

TEF = TEF of compound i.i 

There are two major assumptions in applying the TCDD toxicity equivalence approach to
predicting the toxicity of PCBs and related compounds. The first is that congeners interact
additively to produce AhR-mediated toxicity. Hence, toxicity may be predicted by summation of
the TEQs calculated for each TCDD-like AhR agonist present in fish tissue. This additivity
assumption has been validated for salmonid early life stage toxicity (Zabel et al., 1995b; Hornung
et al., 1996; Walker et al., 1996).

The second major assumption in applying the TCDD toxicity equivalence approach is that the
toxicity of PCBs, PCDDs, and PCDFs is solely related to their TCDD-like toxicity. This
assumption generally holds for predicting lethality in salmonid embryos and larvae (Zabel et al.,
1995a; Cook et al., 1997). However, other toxic effects of PCBs observed in mammals, such as
carcinogenesis, neurotoxicity, or endocrine disruption, are, for certain mono-ortho- and di-ortho-
substituted PCB congeners, not AhR-mediated (Safe, 1994). Thus, non-AhR-mediated toxicity
attributable to PCBs is not assessed by the TCDD toxicity equivalence approach.

7.3.3 Thresholds for Early Life Stage Toxicity to Lake Trout

Several detailed laboratory investigations have been conducted on the toxicity of TCDD to
developing lake trout from which toxicity thresholds can be derived. Table 7-1 lists egg LD50
values for TCDD-caused mortality to lake trout sac fry determined in different studies. An LD50
value is the concentration of TCDD in lake trout eggs at which 50% of the sac fry die from
TCDD exposure. The LD50 values shown in Table 7-1 range from 42 to 80 pg/g egg. The range
of LD50 values is probably a reflection in part of the steep dose-response curve for TCDD-caused
mortality in lake trout sac fry, which makes determining an LD50 value with precision difficult (as
also reflected in the wide 95% fiducial limits shown in Table 7-1). Other reasons for the variability
may include differences in lake trout strains tested, differences in dosing and handling procedures
across laboratories, and analytical and experimental variation.

We used the geometric mean of the values shown in Table 7-1, 61.2 pg/g egg, as a central
estimate of the LD50 values published in the literature. Given the range of LD50s shown in Table
7-1, this mean LD50 may underestimate or overestimate the actual LD50 concentration for Green
Bay and Lake Michigan lake trout. For example, studies have suggested that lake trout eggs with
low thiamine levels, such as occur in Lake Michigan, may be more susceptible to TCDD toxicity
than those with high thiamine levels (such as those commonly used in laboratory 
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Table 7-1
TCDD LD50s for Lake Trout Embryomortality

Source (pg/g egg) Notes

TCDD LD50
(95% fiducial limits)

Walker et al. (1991) 65 (not reported) Waterborne egg exposure
Walker et al. (1996) 74 (70-80) Waterborne egg exposure
Walker et al. (1994) 58 (36-90) Waterborne egg exposure

69 (64-75) Egg exposure via maternal transfer
80 (68-91) Egg injection

Guiney et al. (1996) 69 (58-80) Waterborne egg exposure
44 (36-52) Waterborne egg exposure
65 (60-71) Waterborne egg exposure
53 (41-55) Waterborne egg exposure
72 (65-78) Waterborne egg exposure
57 (50-61) Waterborne egg exposure
42 (33-52) Waterborne egg exposure

Geometric Mean 61.2

toxicity tests) (see Section 7.6). In this case, using the mean LD50 value of 61.2 pg/g egg could
underestimate embryomortality caused by TCDD-like compounds. Nevertheless, the geometric
mean of the published LD50s from the laboratory toxicity studies was used as a best estimate for
use in comparison to exposure concentrations.

We also used the results of the published TCDD toxicity tests on lake trout sac fry to obtain a
central estimate of an LD10, which is the concentration that causes mortality to 10% of the
exposed population. Only two of the published papers listed in Table 7-1 provide information
sufficient to determine LD10s: Walker et al. (1991) provide a graph from which we visually
estimated an LD10 of 35 pg/g egg, and Walker et al. (1996) report an LD10 of 55 pg/g egg.
Using the LD50 values that accompany these two values, we estimated an average dose-response
curve by plotting the points on log concentration/probit scales and taking the average slope as the
average dose-response relationship. Using this average slope, we then estimated an LD10 for each
of the LD50 values shown in Table 7-1, and used the geometric mean of these LD10 values as the
central estimate. The geometric mean of the LD10 values corresponding to the LD50 values
shown in Table 7-1 is 40.9 pg/g egg.

Using the toxicity equivalence approach, these LD50 and LD10 concentrations can be compared
to PCB congener concentrations measured in Lake Michigan lake trout eggs to evaluate the
potential for PCBs to cause lake trout embryomortality. This comparison is shown in the
following sections for both recent and historical lake trout PCB TEQs.
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Several researchers have observed sublethal effects on trout fry at TCDD concentrations below
those that cause mortality. The studies conducted by the USGS and reported in Section 7.6
suggest the occurrence of craniofacial deformities, hemorrhaging, and yolk sac edema at TCDD
concentrations below those that caused lethality. Although quantitative dose-response curves
could not be established from the studies, the data indicate that TCDD exposure can cause gross
deformities at concentrations below those that are lethal. Spitsbergen et al. (1991) found that at
an egg injection dose of 40 pg/g egg lake trout, which did not cause an increase in sac fry
mortality, 30% of the sac fry experienced mild yolk sac edema, a rate higher than in control fry.
The authors reported that most of the sac fry with mild yolk sac edema survived through the sac
fry stage and showed no gross lesions at the time of swim-up. Other sublethal effects of TCDD
include behavioral alteration and reduced growth in rainbow trout (Helder, 1981; Merhle et al.,
1988) and reduced growth in pike (Helder, 1980). However, available data are not sufficient to
develop quantitative dose-response relationships between TCDD exposure and sublethal effects in
lake trout. It is also not known to what extent the sublethal effects, such as reduced growth and
behavioral alterations, could adversely affect fry survival in the wild. Therefore, in this injury
assessment the sublethal effects of TCDD are treated only qualitatively.

7.4 PREVIOUS STUDIES ON FACTORS ASSOCIATED WITH LAKE M ICHIGAN

LAKE TROUT EMBRYOMORTALITY

As noted previously, EMS, or swim-up syndrome, has been identified as a potentially important
contributing factor to the overall reproductive failure of lake trout (Mac, 1988). Most studies on
the causes of EMS have focused on the potential role of contaminants, including PCBs, on egg
survival, egg hatchability, and fry mortality. More recent work has focused on thiamine
deficiency, possibly in conjunction with contaminants such as PCBs, as a possible factor in
causing the observed swim-up syndrome. This section describes and summarizes the results and
conclusions of studies that have investigated the possible causes of the reduced fry and egg
viability that has been and continues to be observed in Lake Michigan lake trout.

7.4.1 Contaminant Exposure

The Service began conducting studies on the potential relationship between Lake Michigan lake
trout egg and fry viability and egg contaminant concentrations in the early 1970s (Table 7-2). In
1972 and 1975, Mac et al. (1981) compared the survivability of lake trout eggs from northeastern
and southeastern Lake Michigan with the survivability of hatchery eggs when reared under
hatchery conditions. The mortality of eggs and sac fry was monitored, but the tests were
terminated prior to fry swim-up. No relationship was found between egg or sac fry mortality and
egg PCB or DDE concentration.
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Table 7-2
Investigations of the Relationship Between Contaminants and Egg and Fry Viability of

Lake Michigan Lake Trout

Study Assessed Results SummaryYear Location

Egg Sampling Endpoint

Mac et al. 1972 and L. MI; Egg and fry � No relationship between PCBs and egg or
(1981) 1975 hatchery mortality fry mortality.

Stauffer 1973-1974 L. MI; Egg and fry � Higher egg mortality in L. MI eggs than
(1979) and 1974- hatchery mortality hatchery eggs.

1975 � No linear correlation of egg or fry mortality
with PCBs or DDT.

Berlin 1975 L. MI Fry mortality � Higher mortality in fry exposed to PCBs in
(1981) water and food than control fry.

� Water and food exposure concentrations
similar to L. MI conditions increased
mortality over controls.

Mac et al. 1980 L. MI; L. Egg and fry � Higher mortality of L. MI eggs than of
(1985) Huron; L. mortality hatchery, L. Superior, or L. Huron eggs.

Superior; � Higher mortality of fry from L. MI than
hatchery from other sources; mortality associated with

swim-up syndrome.
� Higher contaminant concentrations in L. MI
eggs and fry than from other sources (no
correlational analysis conducted).

Mac and 1975 L. MI Fry �Fry exposed to PCBs at 25x L. MI
Bergstedt temperature concentrations in water and food preferred
(1981) preference cooler temperatures than control fry. 

Rottiers and 1975 L. MI Fry � No effects of fry exposure to PCBs in water
Bergstedt swimming and food on swimming performance.
(1981) performance

Mac 1975 L. MI Fry � No effects of fry exposure to PCBs in water
(1981) vulnerability and food on vulnerability to predation.

to predation

Mac et al. 1979-1988 L. MI; L. Egg and fry � Significant correlation between egg
(1993) Superior; L. mortality; mortality and PCB concentration in eggs.

Huron; L. blue sac � Significant correlation between blue-sac
Ontario syndrome; syndrome and PCB concentration in eggs.

swim-up � No relationship between swim-up syndrome
syndrome and PCB concentration in eggs.

� Blue-sac syndrome a small component of
overall fry mortality.
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In a related study conducted by the Michigan DNR from 1973 to 1976, Stauffer (1979) studied
the mortality of hatchery and Lake Michigan eggs and fry reared under hatchery conditions. Fry
were observed through six weeks after swim-up. A significantly higher percentage of Lake
Michigan eggs than hatchery eggs died during incubation, although the egg mortality was not
linearly correlated with egg PCB concentrations. Stauffer (1979) surmised that the higher
mortality of Lake Michigan eggs could be caused by factors such as differences in egg
fertilization, egg handling, or incubation. There was no significant difference in mortality between
hatchery and Lake Michigan fry, and the observed variation in fry mortality was not linearly
correlated to egg PCB concentrations.

The Service expanded its research in 1975-1976 to test the effects of chronic exposure of Lake
Michigan lake trout fry to contaminants in their food and water (Willford et al., 1981). In these
studies, newly hatched fry from eggs of Lake Michigan lake trout were exposed for six months to
PCB and/or DDE concentrations in food and water similar to those in Lake Michigan
(1x treatment) and to concentrations about 5 and 25 times greater (5x and 25x treatments,
respectively). Control treatments were fry from the same Lake Michigan egg source exposed only
to hatchery background levels of PCBs and/or DDE in food and water. Endpoints assessed for
these studies included fry survival and growth (Berlin et al., 1981), temperature preference (Mac
and Bergstedt, 1981), swimming performance (Rottiers and Bergstedt, 1981), and vulnerability to
predation (Mac, 1981).

Berlin et al. (1981) found that fry exposed to the 1x, 5x, and 25x PCB treatments all had higher
mortality (46.4%, 36.3%, and 56.8%, respectively) than control fry (21.7%). Since the
1x treatment represented food and water concentrations similar to ambient conditions in Lake
Michigan, these results demonstrate that exposure to environmental PCBs caused increased fry
mortality. However, fry mortality did not follow a monotonic dose-response relationship with
PCBs, as the 1x treatment had higher mortality (46.4%) than the 5x treatment (36.3%).
Nevertheless, this study led researchers to conclude that PCBs were responsible in part for
reduced lake trout fry survival in Lake Michigan in the mid-1970s (Willford et al., 1981).

Of the other endpoints assessed in fry in these 1975 studies (temperature preference, swimming
performance, and vulnerability to predation), only temperature preference was adversely affected
(Willford et al., 1981). Mac and Bergstedt (1981) found that exposed fry, including fry exposed
to the 1x treatment, exhibited a lowering of the preferred temperature, with frequency
distributions of residence temperatures significantly different among all treatments. They
concluded that such changes in the preferred temperature could reduce the energetic efficiency of
a fish and thereby reduce growth and survival in fish exposed to PCBs.

In 1980, Mac et al. (1985) measured the survival of lake trout eggs and fry from four different
sources reared under different environmental conditions. Eggs and fry collected from Lake
Michigan, Lake Huron, Lake Superior, and from hatchery brood stock were incubated and raised
in water from each of the three sites and in well water. Mac et al. (1985) found that Lake
Michigan egg and fry mortality was higher than for eggs and fry from the other sources,
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regardless of rearing conditions. The symptoms associated with the fry mortality (e.g., loss of
equilibrium, swimming in a corkscrew fashion, lying on their sides, and emaciation) are consistent
with swim-up syndrome and not blue-sac syndrome (Fitzsimons et al., 1995; Marcquenski and
Brown, 1997). PCB concentrations were highest in Lake Michigan eggs, although potential
correlations between PCB concentrations and egg or fry mortality were not evaluated.

A multiyear study by Mac et al. (1993) provides the strongest evidence for an association between
PCBs and reduced reproductive success of Lake Michigan lake trout. Eggs were collected from
lake trout throughout the Great Lakes for multiple years from 1979 to 1988, and egg mortality,
fry mortality, and incidence of blue-sac and swim-up syndromes in Lake Michigan lake trout were
compared with those from Lake Superior, Lake Huron, and Lake Ontario. PCB concentrations
(as PCB congeners) were measured in the egg samples.

Mac et al. (1993) detected several linear correlations between egg PCB concentration and
biological parameters. The strongest correlation was between total egg mortality and total PCB
concentration in the eggs (r = 0.701, p <0.001, N = 23). A relationship was also found between
egg PCB concentration and blue-sac disease, although the extent of blue-sac disease (0.7% to
5.8%) was low. No relationship was found between overall fry mortality or swim-up syndrome
and PCBs.

The results of Mac et al. (1993), who used the most comprehensive dataset of any of the
historical studies of Lake Michigan lake trout egg and fry mortality in relation to PCBs, are
important for several reasons. The finding of a positive correlation between egg PCB
concentrations and blue-sac disease in sac fry is consistent with the symptoms of blue-sac disease
being very similar to those caused by PCB toxicity (as described in Section 7.3). Thus, the blue
sac disease reported by Mac et al. (1993) could very likely have actually been the toxic effects of
PCBs on sac fry. The incidence of blue-sac disease in the fry was relatively low (0.7% to 5.8%),
and much lower than the incidence of swim-up syndrome, which is not known to be caused by
PCB toxicity. The minor contribution of blue-sac disease relative to swim-up syndrome in causing
the observed overall fry mortality is reflected in the fact that overall fry mortality was not
correlated with PCBs, even though blue-sac disease was. The studies of Stauffer (1979) and Mac
et al. (1981), discussed earlier, did not differentiate between blue-sac disease and swim-up
syndrome, and would not have been able to detect a low incidence of sac fry mortality caused by
PCBs.

Another important finding of the Mac et al. (1993) study is that egg mortality was strongly
correlated with egg PCB concentration. This finding is not consistent with the higher tolerance of
lake trout eggs to AhR-mediated PCB toxicity compared with sac fry (as discussed in
Section 7.3), since the incidence of PCB-caused sac fry mortality (as manifested in blue-sac
disease) appears to be low. Mac et al. (1985) and Stauffer (1979) both found higher egg mortality
of Lake Michigan eggs compared with eggs from other sources (hatchery, Lake Superior, or Lake 
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Huron), although Stauffer did not see a correlation between egg mortality and egg PCB
concentration as Mac et al. (1993) did.

There are several possible explanations for the egg mortality/PCB relationship observed by Mac et
al. (1993). One is that the observed correlation is spurious, for example if the egg mortality is
caused by some other factor with which PCBs happened to be correlated. The higher incidence of
mortality in Lake Michigan eggs versus eggs from other sources suggests that some property
inherent to Lake Michigan eggs other than PCBs may have made them more susceptible to
mortality. The higher mortality of Lake Michigan eggs could have been related to experimental
design, for example, if Lake Michigan eggs had to be transported farther or under different
conditions to the hatchery for rearing than eggs from other sources.

Another possible explanation for the egg mortality/PCB relationship observed by Mac et al.
(1993) is that the egg stage is more susceptible to environmental contaminants, including PCBs,
than the sac fry stage under the exposure conditions actually experienced by lake trout in Lake
Michigan. Most of the laboratory tests documenting the lower sensitivity of the egg stage have
focused on the AhR-active congeners of the PCBs, PCDDs, and PCDFs, whereas Lake Michigan
lake trout are exposed to a mixture of congeners and other compounds.

In conclusion, although the results of historical studies on the relationship between egg and fry
viability and PCB contamination in Lake Michigan lake trout are mixed, the studies provide some
evidence that PCBs have caused fry mortality (as blue sac disease) in the past. The relationship
between egg mortality and PCBs in Lake Michigan is less clear, with some studies indicating a
PCB effect in the past and others not. The historical studies also provide evidence that fry reared
in Lake Michigan PCB exposure conditions (in water and food) experienced increased mortality.

7.4.2 Thiamine Deficiency

Recent work by several investigators has suggested a link between swim-up syndrome and
thiamine deficiency in Lake Michigan lake trout. This relatively recent hypothesis has not
undergone as much testing as the possible role of contaminant and so relatively few data exist.
However, the existing evidence points to a strong link between swim-up syndrome and thiamine
deficiency.

The inability to link swim-up syndrome mortality with contaminant burdens led Fitzsimons
(1995b) to study an alternative hypothesis that the syndrome is the result of nutritional factors.
Fitzsimons (1995b) tested the ameliorative effects of a number of B-vitamins (thiamine, riboflavin,
folic acid, nicotinic acid, pyridoxine hydrochloride), administered by either water immersion or
injection, on swim-up syndrome using eggs collected from Lake Ontario female lake trout
between 1990 and 1993. Fitzsimons (1995b) found that thiamine, but none of the other vitamins,
was effective both in reversal and prevention of the clinical signs and mortality associated with the
syndrome. Injection of sac fry with thiamine before swim-up resulted in a significant improvement
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in 1-month post swim-up survival relative to controls, with average mortality in the thiamine-
treated group at 9.4% compared to 75.8% mortality in the control group. Recovery of fry
affected with the symptoms of the syndrome was assessed by immersing the afflicted fry in a
thiamine solution. After 30 days of immersion, mean cumulative mortality in the thiamine solution
group, at 42.2%, was significantly lower than in the control group, where 100% mortality was
observed (Fitzsimons, 1995b).

Similar syndromes have been reported for Atlantic salmon from the Finger Lakes in New York
(called Cayuga syndrome) and from the Baltic Sea (called M74) (McDonald et al., 1998). These
mortality syndromes all affect fry with very low thiamine levels, and sac fry mortality resulting
from these syndromes has been shown to be dramatically reduced by therapeutic thiamine
treatments of eggs or sac fry (McDonald et al., 1998). Immersion of eggs and fry in thiamine is
now routine practice at hatcheries that use feral broodstock to stock salmon in Lake Michigan and
the Baltic Sea (McDonald et al., 1998).

Low thiamine levels in the eggs of Lake Michigan lake trout may be related to the diet of the
maternal fish. The primary food source for adult lake trout in Lake Michigan is alewife
(Madenjian et al., 1998), which contains thiaminase, a group of enzymes capable of destroying
thiamine (Fitzsimons, 1995b). It has been hypothesized that the presence of the non-native
alewive in the Lake Michigan food chain has resulted in low thiamine levels in lake trout eggs,
which has resulted in swim-up syndrome and fry mortality (Fitzsimons, 1995b).

However, there may be interactions, not detected by previous investigations, between low
thiamine levels and contaminants that make fish more susceptible to thiamine deficiency and/or the
toxic effects of TCDD-like compounds. For example, Wright et al. (1998) found that treatment of
rainbow trout and Japanese medaka eggs with thiamine made them less sensitive to TCDD
toxicity. Similarly, the results of supplemental NRDA studies described in Section 7.6 provide
evidence that lake trout eggs low in thiamine are more susceptible to the toxic effects of TCDD
and PCB 126 than are eggs high in thiamine. In addition, swim-up syndrome is more prevalent in
contaminated systems such as Lake Michigan and Lake Ontario, and it has been suggested that
contaminants may increase the thiamine requirements of early life stages (McDonald et al., 1998).
For example, contaminants such as PCBs and DDT are known to reduce thiamine levels in
laboratory rats and may be an important factor when thiamine concentrations are very low
(McDonald et al., 1998). Further research is required before possible interactions of contaminants
such as PCBs with thiamine deficiency can be excluded (McDonald et al., 1998).

7.5 USGS STUDIES ON LAKE M ICHIGAN LAKE TROUT REPRODUCTION :
1996-1998

The USGS carried out studies in 1996 through 1998 to investigate further the possible
relationships between egg contaminant concentrations, egg thiamine levels, and egg/fry viability in
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2. Field sampling procedures, field notebooks, and field measurements are documented in Hagler Bailly Services
(1997b) and Green Bay Fishery Resources Office (1999a; 1999b). These documents are available at the
Service’s reading room in the Green Bay Field Office.

3. Full details on egg and fry rearing method are described in forthcoming USGS reports on the studies.

4. Full documentation and complete results are given in Holey and Honeyfield (1999), available in the Service’s
reading room in the Green Bay Field Office.

Lake Michigan lake trout. These studies provide useful information for assessing current injuries
to Lake Michigan lake trout resulting from PCB exposure.

7.5.1 Methods

From 1996 through 1998, eggs were collected each fall from spawning female lake trout from
western Lake Michigan near Sturgeon Bay, Wisconsin (near Green Bay) . A total of 73 lots of2

eggs from individual spawning females were collected, with 13 lots collected in 1996, 28 in 1997,
and 32 in 1998. Eggs were fertilized with pooled milt of up to six males collected near Sturgeon
Bay at the same time as the eggs. Each female’s lot of eggs was divided into subsamples for
monitoring of egg and fry viability and measurement of thiamine, PCBs, PCDDs, and PCDFs.

Samples for the egg and fry mortality studies were transported on ice to the Great Lakes Science
Center in Ann Arbor via car or overnight mail shipment. Each container of eggs was transferred
to a Heath incubator tray that received a continuous flow of laboratory well water.  Water3

temperatures were recorded for each tray daily. Three times a week dead eggs were counted and
removed. For the first 13 days, dead eggs were discarded; beginning on day 14, dead eggs were
put in Stockard’s solution to determine fertilization status. After all the remaining live eggs had
hatched, subsamples of normal fry from each female were transferred to separate 38 L glass tanks.
Normal and abnormal fry that were not transferred were counted to determine hatching rate, and
abnormal fry were removed and euthanized. Tanks were checked daily for air flow, water flow
and temperature, and dead fry.

Subsamples designated for thiamine concentration analysis were sent to the USGS Research and
Development Laboratory (Leetown Science Center) in Wellsboro, Pennsylvania. Methods for the
thiamine analysis are given in Brown et al. (1998).  Thiamine analysis was performed on fertilized4

eggs from all 12 lots in 1996, and 3 of the lots were also analyzed for thiamine in unfertilized
eggs. In 1997, all 28 egg lots were analyzed for thiamine concentration in unfertilized eggs only,
and in 1998, both fertilized and unfertilized eggs in all 32 lots were analyzed. From these results, a
linear regression was fit to predict thiamine concentrations in unfertilized eggs from fertilized egg
concentrations (p<0.001, r = 0.9615) (Figure 7-3).Thiamine concentrations were thereafter2

expressed as thiamine concentration in unfertilized eggs.
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Figure 7-3
Regression for Estimating Thiamine Concentrations in Fertilized versus Unfertilized Eggs

Subsamples designated for contaminant analysis were sent to Battelle in Duxbury, Massachusetts
where they were analyzed for concentrations of PCBs as Aroclors or as individual congeners
(including coplanar congeners on selected samples). Selected samples were also analyzed for
PCDD and PCDF congeners. Analytical laboratory documentation is provided in Battelle Ocean
Sciences (1997b; 1997a) and Battelle (1999) (available in the Service’s reading room in the Green
Bay Field Office).

The TEF approach was used to express contaminant concentrations in terms of TCDD equivalent
concentrations, or TEQs. TEFs used for this analysis are given in Table 7-4. Since only a subset
of the eggs was analyzed for the coplanar congeners 77, 81, 126, and 169, a regression was fit
between total PCB concentration and TEQ from PCBs in these samples (n = 10) and applied to
the rest of the samples to predict PCB TEQ for samples with total PCB measurements only. The
results of the regression between total PCB concentration and PCB TEQ were significant
(p<0.001; r = 0.80) (Figure 7-4). For samples analyzed for PCDD and PCDF congeners, no 2
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Table 7-4
Toxic Equivalency Factors for PCDD, PCDF, and PCB Congeners

Class Congener TEF

PCDDs 2,3,7,8-TCDD 1.0
1,2,3,7,8-PCDD 0.659
1,2,3,4,7,8-HxCDD 0.263
1,2,3,6,7,8-HxCDD 0.020
1,2,3,7,8,9-HxCDD 0.01
1,2,3,4,6,7,8-HpCDD 0.0015
OCDD -

a

a

a

b

c

b

PCDFs 2,3,7,8-TCDF 0.030
1,2,3,7,8-PeCDF 0.032
2,3,4,7,8-PeCDF 0.339
1,2,3,4,7,8-HxCDF 0.240
1,2,3,6,7,8-HxCDF 0.1
1,2,3,7,8,9-HxCDF 0.1
2,3,4,6,7,8-HxCDF 0.1
1,2,3,4,6,7,8-HpCDF 0.01
1,2,3,4,7,8,9-HpCDF 0.01
OCDF 0.0008

a

a

a

a

c

c

c

c

c

d

PCBs 77 0.00018
81 0.00062
126 0.0049
169 0.00004

a

b

a

b

a. Original source: Zabel et al. (1995), adjusted to mass equivalence ratios from molar equivalence ratios by
Cook et al. (1997).
b. Original source: Walker and Peterson (1991), adjusted to mass equivalence ratios from molar equivalence
ratios by Cook et al. (1997).
c. World Health Organization consensus TEF for fish, as reported by Van den Berg et al. (1998)
d. From description in Van den Berg et al. (1998).

relationship was found between total PCB concentration and the TEQ calculated from the PCDD
and PCDF congener measurements. Therefore, total TEQs (i.e., TEQs based on PCB, PCDD, and
PCDF congeners) could be calculated only for those samples in which PCDD and PCDF
congeners were measured (n = 20) and could not be predicted for those samples in which only 
PCBs were measured.
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Figure 7-4
Regression for Estimating TEQ Contributed by PCBs from Total PCB Concentration

We performed Pearson and Spearman correlation tests to determine whether any of the measured
egg and fry rearing endpoints were correlated with egg thiamine concentration, total PCB
concentration, or total TEQ (for only those samples measured for PCDD and PCDF congeners).
Endpoints assessed were the percentages of eggs that died during incubation (egg mortality), fry
that died during rearing (fry mortality), eggs unhatched, abnormal fry hatched, and normal fry
hatched. Hatching rates were calculated both as percentages of the total number of eggs and as
percentages of the number of fertilized eggs. All correlation tests were conducted after an angular
transformation of the percent response data (Snedecor and Cochran, 1980). 
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5. Full tables of results are included in Appendix B.

7.5.2 Results

Figure 7-5 shows each egg or fry viability endpoint plotted against egg thiamine concentration,
Figure 7-6 shows each endpoint against egg total PCB concentration, and Figure 7-7 shows each
endpoint against egg total TEQ concentration (from PCBs, PCDFs, and PCDDs).  Only one5

relationship was significant (p < 0.05 in both Spearman and Pearson correlation tests): egg
thiamine concentration versus fry mortality (the upper left hand graph in Figure 7-6). This
relationship is shown in more detail in Figure 7-8, which shows that egg batches with less than
approximately 1000 pmol thiamine/g egg had high fry mortality, whereas egg batches with more
than this concentration had low mortality. The 1000 pmol/g concentration equates to a mass-
based concentration of approximately 300 ng thiamine (as thiamine hydrochloride)/g egg, which is
consistent with the dose-response curve reported by Fisher et al. (1996) for thiamine deficiency-
induced swim-up syndrome in lake trout eggs. Thiamine concentrations were not correlated with
any other endpoint, and PCB and TEQ concentrations were not correlated with any of the
endpoints.

To investigate whether low levels of thiamine appeared to make eggs or fry more susceptible to
PCB or TCDD-like toxicity, we conducted two different analyses: (1) tests for correlation
between contaminants and egg/fry viability for only those eggs with low thiamine content (less
than 1000 pmol/g); and (2) partial correlation tests with thiamine as the partial variable to
determine if PCBs or TEQs explained the variation in the data remaining after the thiamine
correlation is accounted for.

The egg and fry viability endpoints are plotted against PCB and total TEQ concentrations for eggs
with less than 1000 pmol/g thiamine in Figure 7-9 and Figure 7-10, respectively. Egg total PCB
concentrations and total TEQs were not significantly correlated with any of the egg or fry viability
endpoints in only those eggs with less than 1000 pmol/g (p > 0.05, Pearson and Spearman
correlation tests). Similarly, the partial correlation tests revealed no significant relationship
between either egg total PCB or TEQ concentration and any of the egg/fry viability measurements
after thiamine effects were partialed out.

7.5.3 Conclusions

The results of the 1996-1998 USGS studies provide clear evidence that thiamine deficiency,
rather than PCBs or other TCDD-like compounds, currently is the primary causal factor for the
fry mortality in Lake Michigan lake trout. In addition, there is no evidence in the data that PCBs
or total TEQs explain any of the variability in the fry mortality data. Other viability measures (egg
mortality, fry abnormalities, unhatched eggs) are not explained by egg thiamine, PCB, or TCDD-
like compound concentrations.
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Figure 7-5
Thiamine Concentration in Lake Trout Eggs vs Measures of Egg and Fry Viability
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Figure 7-6
PCB Concentration in Lake Trout Eggs vs Measures of Egg and Fry Viability
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Figure 7-7
Total TEQ Concentration (from PCBs, PCDDs, and PCDFs) in Lake Trout Eggs vs

Measures of Egg and Fry Viability
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Figure 7-8
Thiamine Concentration in Lake Trout Eggs vs Fry Mortality
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Figure 7-9
PCB Concentration in Lake Trout Eggs vs Measures of Egg and Fry Viability for Samples

with Thiamine Concentrations of Less than 1000 pmol/g
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Figure 7-10
Total TEQ Concentration (from PCBs, PCDDs and PCDFs) vs Measures of Egg and Fry

Viability for Samples with Thiamine Concentrations of Less than 1000 pmol/g
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7.6 SUPPLEMENTAL NRDA AND USGS STUDIES ON

PCB/THIAMINE INTERACTION

In 1996-1998, the Service and the USGS conducted a study on the possible interaction of low
thiamine levels in lake trout eggs with PCB toxicity in Lake Michigan lake trout. The study, which
was described in the NRDA Assessment Plan [61 Fed. Reg. 43558], was designed to evaluate
whether lake trout eggs low in thiamine are more susceptible to the toxic effects of coplanar
PCBs and other AhR-active compounds, including TCDD, than eggs high in thiamine. Several
previous researchers have postulated that such an interaction could exist (McDonald et al., 1998).
Full study methods and results are presented in USGS (1999a; 1999b), which are available in the
Service’s reading room in the Green Bay Field Office.

The specific objective of the study was to determine TCDD, PCB 77, and PCB 126 dose-
response curves for lake trout eggs with different levels of thiamine to determine if egg thiamine
content affects susceptibility to the toxic effects of TCDD and coplanar PCB congeners. An
extract of Lower Fox River walleye that contained a mixture of the PCB, PCDD, and PCDF
congeners found in the walleye was also used as a toxicant. Lake trout eggs were collected from
various sources to obtain eggs of varying thiamine content: Lake Michigan (at Sturgeon Bay,
Wisconsin, near Green Bay), to represent ambient thiamine content of assessment area fish;
Charleston Lake, a relatively uncontaminated lake in Ontario that has lake trout which are low in
thiamine; and the USGS Research and Development Laboratory (Leetown Science Center) in
Wellsboro, Pennsylvania. Adult lake trout at the Wellsboro laboratory were fed different diets in
an attempt to manipulate the thiamine content of the eggs.

Eggs from a given female were divided into two lots prior to fertilization. Immediately after
fertilization, the two lots of eggs were water-hardened in solutions of different thiamine
concentrations to obtain eggs from the same female that differed in thiamine content. Eggs from
these lots were then exposed to TCDD, PCB 77, PCB 126, or walleye extract at six different
concentrations to obtain dose-response curves. Eggs were dosed either via egg injection or
through waterborne exposure. Endpoints measured included mortality, craniofacial deformities,
yolk sac edema, hemorrhaging, and pathological lesions. Dose-response curves for lake trout egg
batches of varying thiamine content were then compared to determine if eggs low in thiamine are
more susceptible to the toxic effects of TCDD, PCB 77, PCB 126, and the walleye extract.

Several technical problems occurred during the study [as described in USGS (1999a; 1999b)] that
limit the ability of the study to definitively answer the study objectives. However, the study did
produce several valuable results:

� Mortality in eggs with low thiamine levels occurred at PCB 126 concentrations that were
lower than concentrations in eggs with high thiamine levels. A similar result was indicated
for sublethal endpoints with TCDD or the walleye extract as the toxicant. These results
support the hypothesis of an interaction between low thiamine levels in lake trout eggs and
increased susceptibility to TCDD and PCB toxicity. However, paired tests on egg batches
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with different thiamine levels using TCDD or the walleye extract as the toxicant did not
produce clear dose-response curves for mortality and thus are difficult to interpret.

� Sublethal effects, including craniofacial deformities, yolk sac edema, and hemorrhaging,
occurred at TCDD, PCB 126, and walleye extract concentrations below those that caused
fry mortality. Although the long-term effect of these sublethal effects is not known, these
data indicate that injury thresholds based on mortality alone may underestimate injury to
lake trout.

� Mortality significantly higher than control mortality occurred at egg concentrations of the
walleye extract that are approximately 20 times higher than present-day concentrations of
the similar mixture that is present in Lake Michigan lake trout eggs (when expressed as
TCDD equivalents). Thus, these data substantiate the 1996-1998 USGS egg rearing
studies that found that PCBs are not primary causative factors in present-day lake trout fry
mortality.

7.7 COMPARISON OF ESTIMATED 1975-1995 PCB CONCENTRATIONS IN LAKE

TROUT EGGS WITH INJURY THRESHOLDS

Although the data above indicate that current PCB concentrations are not causing reproductive
injuries to lake trout, PCB concentration in Green Bay and Lake Michigan lake trout have
declined from their measured historical highs in the 1970s (Stow et al., 1999). This section
presents an estimate of historical concentrations of PCBs and TEQs in Lake Michigan lake trout
eggs and compares these estimated concentrations with toxicity thresholds. The purpose of this
analysis is to evaluate the potential for PCBs to have caused or contributed to the sac fry
mortality observed historically in Lake Michigan lake trout.

7.7.1 Methods

Models Describing Temporal PCB Declines in Lake Michigan Lake Trout

The only historical data on PCB concentrations in lake trout eggs from Green Bay or Lake
Michigan near Green Bay are a limited number of samples from 1982 (Wisconsin Department of
Natural Resources, 1995) and from 1987 (Wisconsin Department of Natural Resources, 1987).
Therefore, to estimate historical egg PCB concentrations, we used the models of Stow et al.
(1999) that were developed for Lake Michigan lake trout fillet PCB concentrations. The Stow et
al. models were based on lake trout fillet PCB concentration data from 1974 to 1994 obtained
from the Wisconsin and Michigan Departments of Natural Resources [see Stow et al. (1995) for a
detailed description of the data sources]. These data, which were collected as part of the State’s
fish contaminant monitoring programs, are the best data available for evaluating historical PCB
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6. Extensive dated sediment core data collected as part of the ongoing Lake Michigan Mass Balance Study may
also be useful for estimating historical concentrations, but the data were not available at the time of this report.

concentrations in Green Bay or Lake Michigan lake trout.  The fillet PCB data used by6

Stow et al. (1999) in constructing their models are from all of Lake Michigan, and thus their
models represent the lake-wide average decline in lake trout PCB concentrations.

Stow et al. (1999) determined that two models of PCB decline in lake trout provided the best fit
to the data: first-order exponential decay with a nonzero asymptote and mixed-order decline. The
formula for the first-order model with a nonzero asymptote is as follows:

C  = C e  + Ct o a
-kt

where C is PCB concentration, t is time, k is the rate constant, and C  represents the nonzeroa

asymptote. This model approximates the temporal decline in PCB concentrations as a first-order
exponential decay that approaches an asymptote greater than zero. Both the decay rate and the
assymptote were determined by Stow et al. (1999) from the available data on historical lake trout
fillet PCB concentrations.

The mixed-order model described by Stow et al. (1999) is as follows:

C  = [C  - kt(1-�)]t o
(1-�) 1/(1-�)

where C is the PCB concentration, t is time, k is the rate constant, and � is a pseudo-order
parameter. This pseudo-order parameter allows the model to estimate declines using a mixed-
order parameter, which allows for concentrations to change over time at a variable rate
(Stow et al., 1999).

We used both the first-order with nonzero asymptote and the mixed-order models derived by
Stow et al. (1999) to estimate historical concentrations of PCBs in lake trout eggs. The curves
defined by the models were calibrated through the 1996-1998 mean concentration measured in
lake trout eggs from near Sturgeon Bay, Wisconsin (near Green Bay on the eastern side of the
Door Peninsula). In this way, the shape of the lake trout egg concentration curve over time is
identical to that determined by Stow et al. (1999) for lake trout fillets, but the position of the
curve on the y-axis is scaled to egg PCB concentrations measured in lake trout from near Green
Bay rather than to lake-wide fillet PCB concentrations.

Estimates of historical concentrations of TEQs from PCBs were derived from the estimated total
PCB concentrations using the regression between 1996-1998 egg total PCBs and TEQs from
PCBs described in Section 7.5.2. Estimates of historical TEQs from PCDD and PCDF congeners
were obtained by fitting the Stow et al. (1999) models through the mean TEQ from PCDD plus
PCDF congeners in the 1996-1998 lake trout eggs (3.8 pg/g). TEQs from PCDD and PCDF
congeners were calculated using the TEFs listed in Table 7-4. Estimated historical total TEQs
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(from PCBs, PCDDs, and PCDFs) were obtained by summing the estimated PCB TEQs with the
estimated PCDD+PCDF TEQs for each year.

Historical Exceedence of Injury Thresholds

We used the central estimates of the TCDD LD10 (40.9 pg/g) and LD50 (61.2 pg/g), described in
Section 7.3.3, as thresholds against which the historical estimated PCB and total TEQs are
compared.

The mixed-order and nonzero asymptote models can be used to estimate the mean egg PCB and
TEQ concentrations in each year but do not estimate the population distribution about the mean.
Therefore, we applied the population distribution of the 1996-1998 egg PCB data to each of the
previous year’s estimated mean to derive an estimated population distribution of egg PCB
concentrations for each year. This approach allows for an estimation of the percent of the
population that exceeds a given injury threshold in each year.

The 1996-1998 egg PCB concentrations were determined to be log-normally distributed (p > 0.05
using the Kolmogorov-Smirnov goodness-of-fit test). To apply the standard deviation from these
data to the yearly means estimated by the models, an assumption is required as to how (if at all)
the standard deviation changes as the population mean increases. To examine the relationship
between standard deviation and mean PCB concentrations in Green Bay fish, we used available
data on historical walleye and carp PCB concentrations from Green Bay, the species for which the
most historical data are available. Figure 7-11 plots two possible assumptions: the standard
deviation is constant over all yearly mean PCB concentrations, or the ratio of the standard
deviation to the yearly mean is constant. As Figure 7-11 shows, for carp and walleye the standard
deviation increases with increasing yearly mean, but the ratio of the standard deviation to the
yearly mean (shown as the solid circles and solid line) is approximately constant. Therefore, we
applied these results for Green Bay carp and walleye to lake trout and assumed that the ratio of
the standard deviation to mean in the 1996-1998 data (on a natural log scale) was constant
through time. In this way, a standard deviation could be estimated for each year based on that
year’s estimated mean value.

The estimated population distributions were compared to the TCDD LD10 and LD50 values
using the procedure depicted in Figure 7-12. The percent of the population exceeding the LD10
and LD50 was estimated for each year as the area under the curve where the estimated total TEQ
is greater than each LD value.

Assumptions

To estimate historical injury to Green Bay lake trout eggs using these models, several key
assumptions are required. One important assumption is that the models developed by Stow et al.
(1999) for PCBs in lake trout fillets are also applicable to PCBs in eggs (once calibrated to egg
concentrations). This assumption essentially amounts to whether the concentration of PCBs in
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Figure 7-11
Relationship between the Mean and Standard Deviation and between the Mean and the
Mean/Standard Deviation Ratio of Total PCB Concentration Measurements for Walleye

Collected from the Fox River and Green Bay between 1978 and 1996 and for Carp
Collected from Green Bay between 1977 and 1992. Each point represents a different year of

data.
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Figure 7-12
Graphical Depiction of Method for Estimating Percent Exceedence of the LD10 and LD50

for Each Year (1976 is shown)

lake trout eggs is related to that in fillets, or whether they are independent of each other. Miller
(1993) investigated the relationship between concentrations of PCBs and DDE in Lake Michigan
and Lake Superior salmonids and their eggs and found that the concentrations of these
compounds in the muscle tissue of the parent lake trout were significantly correlated with the
concentrations in their eggs. Furthermore, Miller (1993) found that the total concentration of
PCBs in the muscle tissue of Lake Michigan lake trout accurately predicted the total
concentration of all organochlorine compounds, including PCBs, in their eggs. Therefore, fillet
and egg PCB concentrations are strongly related to each other, and a model based on fillet
concentrations can be used to estimate egg concentrations.

Another assumption is that the temporal trend curves derived by Stow et al. (1999) for lake-wide
Lake Michigan lake trout are applicable to Green Bay and northern Lake Michigan lake trout.
Stow et al. (1999) used data from the entire lake to construct their models, which thus represent
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lake-wide average trends. Although we calibrated the Stow et al. (1999) curves to egg PCB
concentrations measured in lake trout from near Green Bay, the data are insufficient to determine
whether the lake-wide average temporal trend is appropriate for lake trout in and near Green Bay.
Nevertheless, there are no compelling reasons to assume that the temporal trend of PCBs in
Green Bay and northern Lake Michigan lake trout would be substantially different from the lake-
wide average trend. 

We also assumed that congener patterns have not changed over time in Green Bay lake trout, so
that the relationship between total PCB concentration and PCB TEQ in 1997 would be constant
over time. Mac et al. (1993) analyzed lake trout eggs collected from Lake Michigan between
1979 and 1988, and found no significant change in PCB congener composition over the sampling
period, demonstrating that individual congeners are declining at similar rates in lake trout eggs.
Hebert et al. (1999) examined patterns of PCB congener bioaccumulation in herring gull eggs
between 1971 and 1982, comparing eggs from Lake Ontario to eggs from Green Bay, and
observed minor, but no large, shifts in congener composition in Green Bay. These studies suggest
that PCB congener patterns in Green Bay and Lake Michigan biota have been relatively consistent
over time, so that the relationship between total PCBs and TEQ from PCBs has also been
constant over time.

Finally, we assumed that the temporal model for PCBs can also be applied to PCDDs and PCDFs.
Although this assumption is not required for estimating PCB TEQ concentrations, it is required
for estimating total TEQ concentrations from all AhR-active compounds. The 1996-1998 data for
Lake Michigan lake trout eggs show no relationship between total PCBs and TEQs from PCDDs
and PCDFs, suggesting that PCB and PCDD/PCDF concentrations are independent of each other
in these data. Therefore a temporal model for PCBs may not be appropriate for PCDDs and
PCDFs. However, the lack of a relationship within eggs at one point in time does not necessarily
indicate a lack of a relationship over time. Models developed for PCBs, PCDDs, and PCDFs for
Lake Ontario indicate a similar rate of decline for all three classes of compounds (Cook et al.,
1994). Therefore, there is a reasonable basis to assume that the model developed for PCBs in
Lake Michigan lake trout may also be useful for estimating historical PCDD and PCDF
concentrations.

7.7.2 Results

The model parameters for estimating the changes in mean egg total PCB concentrations over time
are provided in Table 7-5, and the model results are shown in Figure 7-13. Included in Figure 7-
13 are the 1996-1998 data and the only historical data on total PCB concentrations in western
Lake Michigan lake trout available, collected in 1982 and 1987 from lake trout captured near
Sturgeon Bay, Wisconsin. Figure 7-13 shows that both models are consistent with the 1982 and
1987 measurements, although both models appear to slightly overestimate concentrations in 1987
and underestimate concentrations in 1982. Table 7-6 gives the estimated mean values for 
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Table 7-5
Model Parameters for Estimating Historical Egg Total PCB Concentrations

Constant Nonzero Asymptote Mixed-Order Model
First-Order Model with a

k  (1/t) 0.25 0.010a

C  (µg/g) 3.89 7.18o
b

C  (µg/g) 1.02 NAa
b

� NA 2.95a

a. From Stow et al. (1999).
b. Calibrated to the mean of the 1996-1998 egg PCB concentration data.

PCB concentration, TEQ from PCB, and total TEQ for each year estimated by the model, and
Figure 7-14 shows the relative contributions to the total TEQ by PCBs and by PCDDs and
PCDFs.

Comparison of Estimated Historical Concentrations with Injury Thresholds

The yearly results of the percent exceedences of the LD10 and LD50 for the each model are
illustrated in Figure 7-15. The two models gave slightly different results. The mixed-order model
estimated higher percent exceedence in 1974 and 1975, but then allowed for more rapid decline in
total TEQ, and therefore in exceedence, through the late 1970s. After 1979, the rate of decline
estimated by the mixed-order model slows down, and the model again estimates higher
exceedences than the nonzero asymptote model. The nonzero asymptote, since it is a first-order
model, estimated a more steady rate of decline in exceedence of the LD10 and LD50.

The LD10 and LD50 are the lethal doses of TCDD which cause 10% and 50% mortality,
respectively, in exposed lake trout. Therefore, approximately 10% of the lake trout eggs at the
LD10 and 50% of the lake trout eggs at the LD50 would be expected to experience mortality, and
greater percentages of eggs with concentrations above the LD10 and LD50 would experience
mortality. Nevertheless, the models estimate that by 1980, concentrations in less than 1% of Lake
Michigan lake trout eggs were high enough to cause mortality.
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Table 7-6
Mean Concentrations of Lake Trout Total PCBs, TEQ from PCBs, and Total TEQ

Estimated by the Mixed-Order Model and the Nonzero Asymptote Model

Year Mixed-Order Asymptote Mixed-Order Asymptote Mixed-Order Asymptote

Total PCB Conc. (µg/g) TEQ Conc. from PCBs (pg/g) Total TEQ Conc. (pg/g)
Nonzero Nonzero Nonzero

1974 7.18 4.91 19.92 13.63 46.30 31.49

1975 4.19 4.05 11.62 11.25 27.02 25.97

1976 3.24 3.38 8.99 9.39 20.90 21.67

1977 2.73 2.86 7.58 7.94 17.63 18.33

1978 2.41 2.45 6.67 6.81 15.51 15.72

1979 2.17 2.14 6.03 5.93 14.01 13.69

1980 2.00 1.89 5.53 5.25 12.86 12.11

1981 1.86 1.70 5.14 4.71 11.96 10.88

1982 1.74 1.55 4.83 4.30 11.22 9.92

1983 1.64 1.43 4.56 3.97 10.60 9.18

1984 1.56 1.34 4.33 3.72 10.07 8.60

1985 1.49 1.27 4.14 3.53 9.61 8.14

1986 1.43 1.22 3.96 3.37 9.21 7.79

1987 1.37 1.17 3.81 3.25 8.86 7.52

1988 1.32 1.14 3.67 3.16 8.54 7.30

1989 1.28 1.11 3.55 3.09 8.25 7.13

1990 1.24 1.09 3.44 3.03 7.99 7.00

1991 1.20 1.08 3.34 2.99 7.76 6.90

1992 1.17 1.07 3.24 2.96 7.54 6.83

1993 1.14 1.06 3.16 2.93 7.34 6.76

1994 1.11 1.05 3.08 2.91 7.15 6.72

1995 1.08 1.04 3.00 2.89 6.98 6.68

1996 1.06 1.04 2.93 2.88 6.82 6.65

1997 1.03 1.03 2.87 2.87 6.67 6.63

1998 1.01 1.03 2.81 2.86 6.53 6.61
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Figure 7-13
Estimated Mean Total PCB Concentrations in Lake Michigan Lake Trout Eggs, 1974-

1998. Included are measured total PCB concentrations in 1982 from near Sturgeon Bay,
Wisconsin, and in 1996-1998 from near Sturgeon Bay, Wisconsin.
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Figure 7-14
The Relative Contributions to the Total TEQ by PCBs and by PCDDs and PCDFs
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Figure 7-15
Estimated exceedences of the LD10 and LD50 for PCB, PCDD, and PCDF exposure (as total

TEQ) since 1974.
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Application to Green Bay

The application of these models to Green Bay is uncertain. The models derived by Stow et al.
(1999) are based on trends in Lake Michigan lake trout, and the extent to which trends in PCB
concentrations in Lake Michigan lake trout would be similar to those in Green Bay lake trout (if
they were there) is difficult to determine. For example, historical exposure of lake trout to PCBs
may have been different in Green Bay and Lake Michigan, and concentrations may have declined
at different rates. In addition, the migration of lake trout within and between Green Bay and Lake
Michigan could influence how concentrations in Green Bay lake trout relate to those in Lake
Michigan. Differences in the diet may also alter the pattern of PCB accumulation in lake trout
from the two regions.

To address this uncertainty, we compared historical PCB concentrations in Green Bay and
northern Lake Michigan lake trout during two time periods for which data were available from
both locations: 1975-1978 and 1983-1984 (both periods are during the time when lake trout were
stocked in Green Bay) (Wisconsin Department of Natural Resources, 1995). For both time
periods, the average wet weight and lipid-normalized concentrations were higher in Green Bay
than in Lake Michigan, though significant differences were found only for the 1975-1978 time
period. From 1975-1978, wet weight PCB concentration in Green Bay averaged 9.98 mg/kg
compared to 7.37 mg/kg in Lake Michigan (p<0.005, Wilcoxon rank-sum), while lipid-normalized
PCB concentration in Green Bay averaged 89.6 mg/kg compared to 68.8 mg/kg in Lake Michigan
(p<0.001, Wilcoxon rank-sum test). From 1983-1984, wet weight PCB concentration in Green
Bay averaged 3.96 mg/kg compared to 3.38 mg/kg in Lake Michigan, while lipid-normalized PCB
concentration averaged 27.8 mg/kg in Green Bay versus 27.3 mg/kg in Lake Michigan. Thus, the
limited data available suggest that estimates of egg PCB concentrations for Lake Michigan lake
trout may undersestimate concentrations for Green Bay lake trout. Therefore, mortality to Green
Bay lake trout from PCB exposure may have been somewhat higher than that estimated for Lake
Michigan lake trout, but most likely was still not substantial by 1980.

7.7.3 Conclusions

The analysis presented in this section estimates that historical exceedences of the LD10 and LD50
injury thresholds by PCB concentrations in Green Bay and Lake Michigan lake trout eggs were
relatively low. Since 1980, the percent mortality to lake trout eggs from PCB exposure is
estimated to be less than 1%. These results suggest that, although lake trout sac fry were most
likely adversely affected by PCB toxicity in the past, PCB contamination is currently below the
threshold that would contribute significantly to mortality and has been since the early 1980s.
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7.8 SUMMARY AND INJURY DETERMINATION

That Lake Michigan lake trout have failed to re-establish naturally reproducing populations, and
that egg and/or fry mortality has contributed to that failure, is clear. For the Trustees’ injury
determination, the issue is the degree to which the reproductive failure has resulted from PCBs
released from Lower Fox River paper companies. This section presents injury determination
conclusions for lake trout based on the information presented in the chapter.

7.8.1 Injury Definition and Measurements

Injuries to lake trout were assessed according to the definitions of injury in the Department’s
NRDA regulations. Specifically, the injury definitions state that fishery resources have been
injured as a result of the release of a hazardous substance if the concentration of the substance is
sufficient to

cause the biological resource or its offspring to have undergone at least one of the
following adverse changes in viability: death, disease, behavioral abnormalities, cancer,
genetic mutations, physiological malfunctions (including malfunctions in reproduction), or
physical deformations [43 CFR § 11.62(f)(1)(i)].

Adverse changes in viability to lake trout are assessed using the following measurements:

� death, as documented in laboratory toxicity testing [43 CFR § 11.62(f)(4)(i)(A)]
� reduced fish reproduction [43 CFR § 11.62(f)(4)(v)(E)]
� overt external malformations [43 CFR § 11.62(f)(4)(vi)(A)] such as edema
� skeletal deformities [43 CFR § 11.62(f)(4)(vi)(B)] such as craniofacial deformities
� internal whole organ and soft tissue malformations [43 CFR § 11.62(f)(4)(vi)(C)] such as

edema.

7.8.2 Weight of Evidence Evaluation

The results of historical studies on the relationship between egg and fry mortality and PCBs are
mixed. Some studies documented a statistically significant relationship between PCBs and
mortality, whereas others did not. However, most of the studies did not differentiate between the
symptoms and timing of blue-sac syndrome (caused by PCBs and other TCDD-like compounds)
and swim-up syndrome (caused by thiamine deficiencies). Therefore, the endpoints measured in
many of these studies may not be specific to PCB toxicity, decreasing the studies’ power to detect
any relationship between PCBs and egg or fry mortality, particularly if the contribution of PCBs
to the observed mortality is small.
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Our results from modeling PCB concentrations in lake trout eggs from 1974 to 1995 is consistent
both with the limited amount of historical lake trout egg PCB data and with the results of the
studies that have examined potential relationships between PCBs and egg/fry mortality in Lake
Michigan lake trout. The hindcast model, coupled with TCDD toxic thresholds obtained from
available toxicity studies on lake trout, suggests that in the mid-1970s concentrations of PCBs
were sufficient to cause sac fry mortality to some Green Bay and Lake Michigan lake trout eggs,
and that the incidence of PCB-caused mortality declined rapidly to near zero since then. By 1980,
the hindcast model estimates that less than 1% of the eggs had PCB concentrations sufficient to
cause toxicity. This percentage is consistent with the 0.7% to 5.8% incidence of mortality
attributed to blue sac disease, whose symptoms are very similar to PCB toxic effects, by
Mac et al. (1993) in Lake Michigan lake trout eggs from the late 1970s and early 1980s. Given
this low percentage of PCB-caused mortality, it would be difficult to detect PCB-mortality
relationships in studies of mortality in eggs and fry, particularly if the mortality endpoints assessed
are not specific to PCB toxic effects. Thus, the estimates of the model, although subject to several
sources of uncertainty, are consistent with the historical observations on PCB-mortality
relationships and suggest little or no mortality since the 1970s.

Studies in 1996-1998 indicate that thiamine deficiency, not PCBs, is a primary causative factor in
current lake trout reproductive failure. Sac fry mortality was strongly correlated with low egg
thiamine concentration and had no relationship with PCB concentration. This conclusion is
consistent with the fact that the measured PCB concentrations are approximately an order of
magnitude less than those determined to be toxic in lake trout laboratory toxicity studies.
Thiamine deficiency causes swim-up syndrome, which has a set of symptoms and timing distinct
from the toxic effects of PCBs, which are similar to blue-sac disease. Although many historical
studies do not specify whether observed fry mortality was based on symptoms similar to swim-up
syndrome or blue-sac disease, in those that do most (if not all) of the observed fry mortality was
related to swim-up syndrome rather than blue-sac disease. Finally, thiamine deficiency as the
cause for fry mortality in Lake Michigan lake trout is consistent with the results of studies from
other areas, including the Finger Lakes region of New York and the Baltic Sea.

Therefore, the available information supports a conclusion that PCBs currently play little or no
role in Lake Michigan lake trout egg/fry mortality, and that historically they may have played a
small role in the 1970s.

7.8.3 Uncertainties

There are several uncertainties in this injury assessment that may lead to an underestimate of
injuries. One uncertainty is the degree to which any PCB/thiamine interaction makes Lake
Michigan lake trout eggs more susceptible to EMS or other reproductive effects than predicted
based on available field and laboratory toxicity data. Such an interaction could make lake trout
eggs that contain PCBs more susceptible to EMS, which is consistent with the higher incidence of
EMS observed in contaminated Great Lakes (McDonald et al., 1998). A similar interaction could
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be involved in studies that have suggested that eggs low in thiamine, but high enough to survive,
are more susceptible to PCB toxicity than eggs high in thiamine, such as those typically used in
laboratory toxicity studies (Section 7.6; Wright et al., 1998). Such an interaction could make
some Lake Michigan lake trout eggs more susceptible to PCB toxicity. Available information is
not sufficient to quantitatively assess the potential interaction of low thiamine levels and PCB
exposure. Nevertheless, the 1996-1998 Lake Michigan lake trout egg rearing studies conducted
by the USGS (described in Section 7.5) show that if such a PCB/thiamine interaction is occurring,
it is of very small magnitude under current conditions relative to the effects of thiamine deficiency.

Another issue is the potential for sublethal effects of PCBs on developing lake trout, such as
behavioral alterations, reduced growth, or deformities. Some available information suggests the
potential for sublethal effects to occur at exposure concentrations below those that cause
mortality and below currently available toxicity thresholds (described in Sections 7.3 and 7.6).
These sublethal effects could decrease the viability of lake trout fry in the wild, effectively
decreasing the injury threshold concentrations for PCBs in lake trout. Some studies have indicated
that at least some of these sublethal effects may be reversible (Spitsbergen et al., 1991). Again,
however, the information available currently is insufficient to address these potential injuries
quantitatively.

Finally, another uncertainty is the potential for the laboratory-derived thresholds for TCDD
toxicity to lake trout sac fry to underestimate actual toxicity in the field. For example, the results
of Mac et al. (1993) suggest that egg mortality is related to PCB concentrations in lake trout eggs
from the Great Lakes (including Lake Michigan), a result that cannot be explained within the
context of the current laboratory studies on TCDD toxicity to lake trout eggs and fry. Although
the current information from laboratory studies is compelling, it may be that the current laboratory
studies do not fully capture the contaminants, exposure regimes, mechanisms of toxicity, and
interactions with other factors that occur in the wild. With the information currently available,
these potentially mitigating factors can only be treated qualitatively as uncertainties in the injury
assessment for lake trout.

7.8.4 Injury Determination Conclusion

Based on the available information, the Trustees conclude the following regarding injuries to lake
trout in Green Bay and Lake Michigan resulting from PCB exposure:

� PCB concentrations in the mid-1970s were sufficient to cause sac fry mortality in some
lake trout eggs.

� PCB concentrations since the 1970s have not been sufficient to cause sac fry mortality to
lake trout. By 1980, concentrations in less than 1% of Lake Michigan lake trout eggs are
estimated to have been sufficient to cause mortality.
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� PCB concentrations since the 1970s may be sufficient to cause sublethal effects or interact
with low thiamine levels, but the presence and magnitude of these possible effects cannot
be determined from the available information.

Given that evidence suggests little to no reproductive effects of PCBs since 1980 and that other
factors appear to be substantially more important to the survival of lake trout fry, the Trustees
determine that current data do not support the conclusion that lake trout in Green Bay and Lake
Michigan are injured by the PCBs released from Fox River paper companies.



CHAPTER 8
FISH INJURY ASSESSMENT SUMMARY

The Trustees have conducted an assessment of injuries to fishery resources of the Lower Fox
River/Green Bay environment that result from releases of PCBs from Fox River paper company
facilities. The injury assessment included determination of PCB transport pathways from paper
company facilities to fishery resources of the river and bay, injury determination, and injury
quantification. The injury assessment was conducted consistent with the Department’s NRDA
regulations at 43 CFR Part 11, and included assessment of injuries associated with state fish
consumption advisories because of PCBs, exceedences of the Food and Drug Administration’s
PCB tolerance level, and adverse effects on fish viability.

The most significant injury to fishery resources of the Lower Fox River and Green Bay that
results from paper company PCB releases is the presence of extensive fish consumption
advisories. The advisories, ranging from limited to no fish consumption, are in place for dozens of
fish species throughout the Lower Fox River, Green Bay, and northern Lake Michigan. The
advisories have been in place since the 1970s and continue to the present (1999). The
quantification of the losses to the public as a result of the PCB fish consumption advisories is
presented in the Trustees’ report on recreational fishing damages (Stratus Consulting, 1999e).

Consistent with the fish consumption advisories are injuries resulting from exceedences of the
Food and Drug Administration’s tolerance level for PCBs in fish tissue. The tolerance level is
exceeded in many fish species throughout the assessment area. This injury is indicative of the
extensive PCB contamination of Lower Fox River and Green Bay fish.

Walleye in the Lower Fox River and Green Bay suffer from the injury of increased liver tumors.
The injury is most pronounced in female walleye, in which 34% of fish from the river and bay had
liver tumors or pre-tumors compared with 7% of fish from reference areas. The Trustees assessed
other adverse viability injuries, including brown trout and lake trout health and lake trout
reproduction, and concluded that available information does not support a conclusion that these
fish currently are suffering from PCB-caused injuries, although they may have in the past.
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APPENDIX A
PCB CONCENTRATIONS IN WALLEYE L IVERS

COLLECTED IN 1997

Table A-1
Fish Identification and Liver PCB Concentration for Walleye Collected in 1997

Sample Location Identification (mg/kg wet weight) in Liver
Fish Total PCB Concentration

a

Eastern Green Bay weeg08/2701 1.33
weeg08/2702 3.82
weeg08/2703 2.27
weeg08/2704 3.86
weeg08/2805 2.66
weeg08/2806 3.04
weeg08/2907 2.93
weeg08/2908 0.86
weeg08/2909 1.90
weeg08/2910 1.47
weeg08/2911 1.62
weeg08/2912 1.03
weeg08/2913 2.43
weeg09/1514 2.58
weeg09/1515 2.27
weeg09/1516 6.55
weeg09/1517 3.21

Lower Fox River wefr08/1201 8.68
wefr08/1202 -b

wefr08/1203 5.79
wefr08/1204 6.51
wefr08/1205 4.49
wefr08/1206 6.80
wefr08/1207 4.64
wefr08/1208 7.99
wefr08/1209 8.49
wefr08/1210 5.95
wefr08/1211 5.61
wefr08/1212 4.91
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Table A-1 (cont.)
Fish Identification and Liver PCB Concentration for Walleye Collected in 1997

Sample Location Identification (mg/kg wet weight) in Liver
Fish Total PCB Concentration

a

Lower Fox River wefr08/1213 8.05

wefr08/1214 5.11

wefr08/1215 10.6

wefr08/1216 4.48

wefr08/1217 5.58

wefr08/1218 6.17

wefr08/1219 6.95

wefr08/1220 5.23

welg08/2601 1.15

Lower Green Bay welg08/2602 1.87

welg08/2603 1.98

welg08/2604 10.5

welg08/2605 1.00

welg08/2606 2.85

welg08/2607 12.9

welg08/2608 3.65

welg08/2609 2.45

welg08/2610 5.27

welg08/2611 3.90

welg08/2612 1.38

Western Green Bay wewg08/1001 5.17

wewg08/1002 1.44

wewg08/1003 2.95

wewg08/1004 1.93

wewg08/1005 5.73

wewg08/1006 3.10

wewg08/1007 6.45

wewg08/1008 1.74
wewg08/1009 3.69
wewg08/1010 4.12
wewg08/1311 8.46
wewg08/1312 2.82
wewg08/1313 4.27
wewg08/1314 2.99
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Table A-1 (cont.)
Fish Identification and Liver PCB Concentration for Walleye Collected in 1997

Sample Location Identification (mg/kg wet weight) in Liver
Fish Total PCB Concentration

a

Lake Patten welp09/1601 0.24
welp09/1602 0.00
welp09/1603 0.00
welp09/1604 0.00
welp09/1605 0.00
welp09/1606 0.00
welp09/1607 0.00
welp09/1608 0.00
welp09/1609 0.00
welp09/1610 0.00
welp09/1611 0.00
welp09/1612 0.00
welp09/1613 0.00

Lake Winnebago welw08/1101 0.40
welw08/1102 0.62
welw08/1103 0.61
welw08/1104 0.68
welw08/1105 0.73
welw08/1106 0.68
welw08/1107 0.64
welw08/1108 1.21
welw08/1109 0.54
welw08/1110 1.72
welw08/1111 2.22
welw08/1112 1.20
welw08/601 -b

welw08/602 -b

welw08/603 -b

welw08/604 -b

welw08/605 -b

welw08/606 -b

welw08/607 -b

welw08/608 -b

welw08/609 -b

a. Identification code used in field collections.
b. -: not determined.



APPENDIX B
EGG AND FRY VIABILITY AND CONTAMINANT DATA

IN 1996-1998 USGS STUDIES

Table B-1
Data from Egg and Fry Rearing Studies Conducted by USGS

Egg Lot I.D. PercentTotal Fertilized Total Fertilized Fry Fry Total

Eggs Collected Eggs that Died Number of Eggs Hatched
Fry MortalityNormal Abnormal

a

stbay01.1996 3216 1896 1531 211 1648 37 1685 2.0

stbay02.1996 1592 1414 232 54 1323 37 1360 2.0

stbay03.1996 2044 1822 315 93 1703 26 1729 2.0

stbay05.1996 679 651 43 15 634 2 636 2.0

stbay06.1996 588 572 37 21 543 8 551 98.4

stbay09.1996 246 220 25 3 213 4 217 2.0

stbay10.1996 179 153 33 7 142 4 146 2.0

stbay11.1996 955 879 108 32 797 50 847 2.0

stbay12.1996 903 739 232 68 603 68 671 96.8

stbay13.1996 1275 1182 125 32 1120 30 1150 84.4

stbay14.1996 1199 1134 190 125 973 36 1009 99.8

stbay15.1996 371 349 37 15 319 15 334 2.0

stbay01.1997 965 661 504 200 412 49 461 2.0

stbay02.1997 742 523 393 174 289 60 349 0.8

stbay03.1997 853 553 423 123 413 17 430 4.8

stbay04.1997 1071 756 459 144 555 57 612 38.8

stbay05.1997 1147 454 828 135 280 39 319 0.8

stbay06.1997 1097 164 990 57 97 10 107 2.1

stbay07.1997 730 414 503 187 192 35 227 2.1

stbay08.1997 856 546 479 169 311 66 377 0.8

stbay09.1997 1296 864 716 284 505 75 580 2.8

stbay10.1997 844 153 772 81 66 6 72 12.1

stbay11.1997 971 528 605 162 336 30 366 1.6

stbay12.1997 981 796 348 163 580 53 633 31.6

stbay13.1997 500 322 234 56 253 13 266 0.0
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Table B-1 (cont.)
Data from Egg and Fry Rearing Studies Conducted by USGS

Egg Lot I.D. PercentTotal Fertilized Total Fertilized Fry Fry Total

Eggs Collected Eggs that Died Number of Eggs Hatched
Fry MortalityNormal Abnormal

a

stbay14.1997 958 934 67 43 860 31 891 100.0

stbay15.1997 527 428 178 79 330 19 349 0.0

stbay16.1997 711 309 514 112 171 26 197 100.0

stbay17.1997 1390 1133 289 32 1068 33 1101 0.0

stbay18.1997 763 647 191 75 542 30 572 0.0

stbay19.1997 1185 1029 195 39 955 35 990 55.4

stbay20.1997 772 732 86 46 666 20 686 0.4

stbay21.1997 1720 1492 247 19 1445 28 1473 1.2

stbay22.1997 771 737 48 14 697 26 723 2.0

stbay23.1997 1173 943 301 71 846 26 872 100.0

stbay24.1997 1072 1023 83 34 974 15 989 0.0

stbay25.1997 909 793 126 10 758 25 783 12.8

stbay26.1997 1060 914 195 49 853 12 865 2.0

stbay27.1997 1408 1172 261 25 1122 25 1147 4.4

stbay28.1997 1132 865 320 53 794 18 812 0.9

stbay01.1998 876 24 866 14 9 1 10 NAb

stbay02.1998 800 149 665 14 99 36 135 100.0

stbay03.1998 660 292 416 48 215 29 244 0.0

stbay04.1998 634 252 438 56 173 23 196 0.0

stbay05.1998 678 148 578 48 80 20 100 0.0

stbay06.1998 751 223 612 84 101 38 139 1.0

stbay07.1998 585 233 407 55 155 23 178 100.0

stbay08.1998 504 211 351 58 121 32 153 1.0

stbay09.1998 522 49 498 25 14 10 24 NAb

stbay10.1998 947 251 749 53 162 36 198 2.0

stbay11.1998 1133 148 1015 30 100 18 118 43.0

stbay12.1998 853 281 638 66 204 11 215 78.0

stbay13.1998 899 62 882 45 10 7 17 NAb

stbay14.1998 1161 471 881 191 235 45 280 58.0

stbay15.1998 992 311 737 56 221 34 255 100.0

stbay16.1998 1418 300 1227 109 168 23 191 0.0

stbay17.1998 1116 53 1083 20 32 1 33 NAb

stbay18.1998 1056 822 263 29 741 52 793 1.0
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Table B-1 (cont.)
Data from Egg and Fry Rearing Studies Conducted by USGS

Egg Lot I.D. PercentTotal Fertilized Total Fertilized Fry Fry Total

Eggs Collected Eggs that Died Number of Eggs Hatched
Fry MortalityNormal Abnormal

a

stbay19.1998 931 225 771 65 136 24 160 1.0

stbay20.1998 1225 888 439 102 674 112 786 1.0

stbay21.1998 819 633 233 47 510 76 586 1.0

stbay22.1998 1081 579 558 56 478 45 523 69.0

stbay23.1998 857 563 353 59 452 52 504 0.0

stbay24.1998 867 369 554 56 288 25 313 1.0

stbay25.1998 882 322 669 109 181 32 213 0.0

stbay26.1998 802 519 356 73 388 58 446 2.0

stbay27.1998 900 818 92 10 791 17 808 70.0

stbay28.1998 711 624 98 11 589 24 613 0.0

stbay29.1998 724 281 457 14 260 7 267 0.0

stbay30.1998 544 411 142 9 380 22 402 0.0

stbay31.1998 717 557 170 10 540 7 547 1.0

stbay32.1998 1275 587 712 24 538 25 563 1.0

a. Measured from normal fry that were transferred and reared for approximately 75 days post-hatch.
b. NA = No measurements made for fry mortality.
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Table B-2
Data for Thiamine and Contaminant Analysis on Eggs Collected for USGS Studies

Egg Lot I.D. Eggs Eggs Conc. (ng/g) TCDFs (pg/g) (pg.g) Percent Lipid

Thiamine Concentration
(pmol/g) Contaminant Concentrations

Fertilized Unfertilized Total PCB TCDDs and from PCBs
TEQ Conc. from TEQ Conc.

b

stbay01.1996 3393.6 3418.5 744.7 NA 0.49 2.14

stbay02.1996 962.4 1572.0 626.6 NA 1.99 3.22

stbay03.1996 1307.0 1441.3 237.0 NA 1.01 2.20a

stbay05.1996 1055.0 1163.4 489.0 NA 1.30 2.70a

stbay06.1996 475.0 523.8 811.1 NA 1.88 2.81a

stbay09.1996 4490.0 4951.5 537.9 NA 1.85 3.74a

stbay10.1996 2413.0 2661.0 557.5 NA 2.07 3.24a

stbay11.1996 508.5 918.8 494.6 NA 0.39 3.39

stbay12.1996 409.0 451.0 785.2 NA 2.15 2.77a

stbay13.1996 621.0 684.8 841.4 NA 2.74 3.91a

stbay14.1996 373.0 411.3 281.3 NA 0.65 2.38a

stbay15.1996 13765.0 15179.8 374.8 NA 1.12 2.86a

stbay01.1997 937.1 1033.4 1440.4 NA 3.96 4.33a

stbay02.1997 3143.8 3466.9 1095.3 NA 3.06 2.28a

stbay03.1997 1083.9 1195.3 1110.0 NA 3.10 3.58a

stbay04.1997 891.5 983.1 1353.4 NA 3.73 2.96a

stbay05.1997 3622.6 3994.9 379.8 1.75 1.20 3.68a

stbay06.1997 10393.6 11461.8 491.7 7.02 1.49 3.41a

stbay07.1997 2564.46 2827.9 926.5 2.45 2.62 3.73a

stbay08.1997 4941.5 5449.4 1038.3 NA 2.91 2.54a

stbay09.1997 1304.4 1438.5 1425.4 NA 3.92 3.00a

stbay10.1997 1284.3 1416.3 424.4 3.48 1.32 3.38a

stbay11.1997 1992.9 2197.8 1715.6 NA 4.67 3.65a

stbay12.1997 576.3 635.6 535.9 6.19 1.61 3.92a

stbay13.1997 4645.6 5123.0 1461.4 NA 4.01 2.84a

stbay14.1997 584.0 644.1 675.2 2.62 1.97 4.83a

stbay15.1997 1995.3 2200.4 841.4 3.91 2.40 4.10a

stbay16.1997 796.6 878.5 925.7 5.52 2.62 3.49a

stbay17.1997 809.0 892.2 2469.3 5.97 6.63 3.51a

stbay18.1997 1818.2 2005.1 1528.5 NA 4.19 3.00a

stbay19.1997 786.9 867.8 734.6 NA 2.12 3.19a
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Table B-2 (cont.)
Data for Thiamine and Contaminant Analysis on Eggs Collected for USGS Studies

Egg Lot I.D. Eggs Eggs Conc. (ng/g) TCDFs (pg/g) (pg.g) Percent Lipid

Thiamine Concentration
(pmol/g) Contaminant Concentrations

Fertilized Unfertilized Total PCB TCDDs and from PCBs
TEQ Conc. from TEQ Conc.

b

stbay20.1997 6981.0 7698.5 670.0 NA 1.96 2.20a

stbay21.1997 1183.6 1305.2 1143.3 NA 3.19 2.52a

stbay22.1997 1474.7 1626.2 28.4 2.14 0.29 3.64a

stbay23.1997 640.6 706.5 1593.1 NA 4.36 2.46a

stbay24.1997 3350.9 3695.3 846.8 NA 2.42 3.08a

stbay25.1997 3204.9 3534.3 2158.2 NA 5.83 3.71a

stbay26.1997 3804.5 4195.5 1985.2 NA 5.38 3.33a

stbay27.1997 2826.2 3116.7 2036.2 NA 5.51 2.76a

stbay28.1997 14253.6 15718.6 636.6 NA 1.87 2.83a

stbay01.1998 646.3 942.2 2456.9 NA 6.60 4.43

stbay02.1998 449.7 562.9 1065.9 NA 2.99 4.03

stbay03.1998 1172.8 1918.1 734.8 NA 2.12 3.77

stbay04.1998 6382.9 7173.7 1420.3 NA 3.91 4.87

stbay05.1998 3836.1 5184.8 438.3 3.21 1.35 4.62

stbay06.1998 1656.7 2285.4 1241.1 NA 3.44 4.36

stbay07.1998 335.8 725.7 572.4 2.12 1.70 3.88

stbay08.1998 2019.3 2852.0 1538.4 NA 4.21 3.91

stbay09.1998 3776.6 5284.4 1032.9 NA 2.90 4.45

stbay10.1998 1443.3 2069.8 1854.5 NA 5.04 4.02

stbay11.1998 337.6 546.4 422.9 0.40 1.31 4.16

stbay12.1998 489.7 739.9 398.0 3.07 1.25 3.37

stbay13.1998 6887.5 7998.5 1079.3 NA 3.02 4.47

stbay14.1998 494.8 678.1 391.1 1.55 1.23 4.14

stbay15.1998 202.7 393.6 758.7 3.00 2.19 3.85

stbay16.1998 2709.6 3160.4 1245.7 NA 3.45 4.74

stbay17.1998 5502.6 4976.7 1272.6 NA 3.52 4.14

stbay18.1998 4279.5 5218.6 1352.0 NA 3.73 4.64

stbay19.1998 5715.3 7668.6 1079.1 NA 3.02 4.72

stbay20.1998 819.5 788.6 701.9 NA 2.04 3.69

stbay21.1998 10592.4 13566.8 750.0 NA 2.16 4.38

stbay22.1998 603.8 441.7 1045.2 NA 2.93 4.48
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Table B-2 (cont.)
Data for Thiamine and Contaminant Analysis on Eggs Collected for USGS Studies

Egg Lot I.D. Eggs Eggs Conc. (ng/g) TCDFs (pg/g) (pg.g) Percent Lipid

Thiamine Concentration
(pmol/g) Contaminant Concentrations

Fertilized Unfertilized Total PCB TCDDs and from PCBs
TEQ Conc. from TEQ Conc.

b

stbay23.1998 12784.6 11051.0 1110.0 NA 3.10 4.14

stbay24.1998 958.1 1019.2 1274.4 NA 3.53 4.04

stbay25.1998 1893.7 1252.8 1509.8 NA 4.14 3.59

stbay26.1998 4227.3 4548.9 681.6 7.35 1.99 4.10

stbay27.1998 1850.2 631.3 500.4 1.50 1.52 4.04

stbay28.1998 7318.1 7395.3 1387.9 NA 3.82 3.78

stbay29.1998 5390.3 4849.3 428.2 6.01 1.33 3.89

stbay30.1998 2137.1 1183.4 4852.4 NA 12.83 1.70

stbay31.1998 4498.8 3281.2 701.3 5.90 2.04 3.96

stbay32.1998 2061.4 1273.7 754.0 NA 2.17 3.06

a. Estimated by regression between fertilized egg and unfertilized egg thiamine concentrations.
b. Analyzed only for eggs collected in 1996 (refer to Egg Lot I.D. for collection year). For lots collected in
1997 and 1998, estimated by regression between total PCB concentration and TEQ concentration from PCBs
using data for lots collected in 1996.
NA = not analyzed.


